Wang Shuangshuang, Hu Huatian, Liu Xiaoze, Ding Tao
Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
Wuhan Institute of Quantum Technology, Wuhan 430206, China.
Nanophotonics. 2023 Jul 14;12(16):3211-3216. doi: 10.1515/nanoph-2023-0054. eCollection 2023 Aug.
Fano resonance due to coupling of plasmon mode and Bragg modes is revealed without strong angular dependence based on Au nanoparticle on distributed Bragg reflectors (Au NPoDBRs). This Fano interference involves three-modes-coupling: the nanoparticle's plasmon resonance, dispersive Bragg modes, and non-dispersive Bragg modes. It can be interpreted as a consequence of two processes: plasmonic coupling between dispersive Bragg modes and broad plasmon mode, and the strong coupling between narrowed plasmonic mode and non-dispersive Bragg mode. This Fano interference shows little dependence on the incidence angle but high tunability with the top-layer thickness, which is exploitable for novel nanophotonic devices with dispersion engineering.
基于分布式布拉格反射器上的金纳米颗粒(Au NPoDBRs),揭示了由于等离子体模式与布拉格模式耦合而产生的法诺共振,且该共振没有强烈的角度依赖性。这种法诺干涉涉及三模耦合:纳米颗粒的等离子体共振、色散布拉格模式和非色散布拉格模式。它可以被解释为两个过程的结果:色散布拉格模式与宽等离子体模式之间的等离子体耦合,以及变窄的等离子体模式与非色散布拉格模式之间的强耦合。这种法诺干涉对入射角的依赖性很小,但随顶层厚度具有高度可调性,这可用于具有色散工程的新型纳米光子器件。