Weber Michael, Leutenegger Marcel, Stoldt Stefan, Jakobs Stefan, Mihaila Tiberiu S, Butkevich Alexey N, Hell Stefan W
Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany.
Nat Photonics. 2021 May;15(5):361-366. doi: 10.1038/s41566-021-00774-2. Epub 2021 Mar 15.
We introduce MINSTED, a fluorophore localization and super-resolution microscopy concept based on stimulated emission depletion (STED) that provides spatial precision and resolution down to the molecular scale. In MINSTED, the intensity minimum of the STED doughnut, and hence the point of minimal STED, serves as a movable reference coordinate for fluorophore localization. As the STED rate, the background and the required number of fluorescence detections are low compared with most other STED microscopy and localization methods, MINSTED entails substantially less fluorophore bleaching. In our implementation, 200-1,000 detections per fluorophore provide a localization precision of 1-3nm in standard deviation, which in conjunction with independent single fluorophore switching translates to a -100-fold improvement in far-field microscopy resolution over the diffraction limit. The performance of MINSTED nanoscopy is demonstrated by imaging the distribution of Mic60 proteins in the mitochondrial inner membrane of human cells.
我们介绍了MINSTED,一种基于受激发射损耗(STED)的荧光团定位和超分辨率显微镜概念,它能提供直至分子尺度的空间精度和分辨率。在MINSTED中,STED光阑的强度最小值,即最小STED点,用作荧光团定位的可移动参考坐标。由于与大多数其他STED显微镜和定位方法相比,STED速率、背景和所需的荧光检测次数较低,MINSTED导致的荧光团漂白要少得多。在我们的实验中,每个荧光团进行200 - 1000次检测可提供标准差为1 - 3nm的定位精度,这与独立的单个荧光团切换相结合,使得远场显微镜分辨率比衍射极限提高了100倍。通过对人类细胞线粒体内膜中Mic60蛋白的分布进行成像,证明了MINSTED纳米显微镜的性能。