Cho Mingwan, Jung Joonkyo, Kim Myungjoon, Lee Jeong Yub, Min Seokhwan, Hong Jongwoo, Lee Shinho, Heo Minsung, Kim Jong Uk, Joe In-Sung, Shin Jonghwa
Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea.
Samsung Advanced Institute of Technology, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea.
Nanophotonics. 2024 Apr 15;13(16):2971-2982. doi: 10.1515/nanoph-2024-0064. eCollection 2024 Jul.
Silicon is the dominant material in complementary metal-oxide-semiconductor (CMOS) imaging devices because of its outstanding electrical and optical properties, well-established fabrication methods, and abundance in nature. However, with the ongoing trend toward electronic miniaturization, which demands smaller pixel sizes in CMOS image sensors, issues, such as crosstalk and reduced optical efficiency, have become critical. These problems stem from the intrinsic properties of Si, particularly its low absorption in the long wavelength range of the visible spectrum, which makes it difficult to devise effective solutions unless the material itself is changed. Recent advances in optical metasurfaces have offered new possibilities for solving these problems. In this study, we propose color arrestor pixels (CAPs) as a new class of color image sensors whose composite spectral responses directly mimic those of the human eye. The key idea is to employ linearly independent combinations of standardized color matching functions. These new basis functions allow our device to reproduce colors more accurately than the currently available image sensors with red-green-blue filters or other metasurface-based sensors, demonstrating an average CIEDE2000 color difference value of only 1.79 when evaluating 24 colors from the Gretag-Macbeth chart under standard illuminant D65. Owing to their high fidelity to the human eye response, CAPs consistently exhibit exceptional color reproduction accuracy under various spectral illumination compositions. With a small footprint of 860 nm height and 221 nm full-color pixel pitch, the CAPs demonstrated high absorption efficiencies of 79 %, 81 %, and 63 % at wavelengths of 452 nm, 544 nm, and 603 nm, respectively, and good angular tolerance. With such a high density of pixels efficiently capturing accurate colors, CAPs present a new direction for optical image sensor research and their applications.
硅是互补金属氧化物半导体(CMOS)成像器件中的主要材料,这是因为它具有出色的电学和光学特性、成熟的制造方法以及在自然界中的丰富储量。然而,随着电子小型化趋势的不断发展,这要求CMOS图像传感器中的像素尺寸更小,诸如串扰和光学效率降低等问题已变得至关重要。这些问题源于硅的固有特性,特别是其在可见光谱长波长范围内的低吸收率,这使得除非改变材料本身,否则很难设计出有效的解决方案。光学超表面的最新进展为解决这些问题提供了新的可能性。在本研究中,我们提出了颜色抑制像素(CAPs)作为一类新型彩色图像传感器,其复合光谱响应直接模仿人眼的响应。关键思想是采用标准化颜色匹配函数的线性独立组合。这些新的基函数使我们的器件能够比目前使用红-绿-蓝滤光片的图像传感器或其他基于超表面的传感器更准确地再现颜色,在标准照明光源D65下评估Gretag-Macbeth色卡中的24种颜色时,平均CIEDE2000色差仅为1.79。由于它们对人眼响应具有高保真度,CAPs在各种光谱照明组合下始终表现出出色的颜色再现精度。CAPs具有860 nm高和221 nm全彩色像素间距的小尺寸,在波长452 nm、544 nm和603 nm处分别表现出79 %、81 %和63 %的高吸收效率以及良好的角度容差。凭借如此高密度的像素有效地捕捉准确的颜色,CAPs为光学图像传感器的研究及其应用提供了一个新方向。