Smalley Joseph S T, Ren Xuexin, Lee Jeong Yub, Ko Woong, Joo Won-Jae, Park Hongkyu, Yang Sui, Wang Yuan, Lee Chang Seung, Choo Hyuck, Hwang Sungwoo, Zhang Xiang
Nano-Scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California Berkeley, Berkeley, CA, 94720, USA.
Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Samsung-ro 130, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Korea.
Nat Commun. 2020 Aug 6;11(1):3916. doi: 10.1038/s41467-020-17743-y.
The demand for essential pixel components with ever-decreasing size and enhanced performance is central to current optoelectronic applications, including imaging, sensing, photovoltaics and communications. The size of the pixels, however, are severely limited by the fundamental constraints of lightwave diffraction. Current development using transmissive filters and planar absorbing layers can shrink the pixel size, yet there are two major issues, optical and electrical crosstalk, that need to be addressed when the pixel dimension approaches wavelength scale. All these fundamental constraints preclude the continual reduction of pixel dimensions and enhanced performance. Here we demonstrate subwavelength scale color pixels in a CMOS compatible platform based on anti-Hermitian metasurfaces. In stark contrast to conventional pixels, spectral filtering is achieved through structural color rather than transmissive filters leading to simultaneously high color purity and quantum efficiency. As a result, this subwavelength anti-Hermitian metasurface sensor, over 28,000 pixels, is able to sort three colors over a 100 nm bandwidth in the visible regime, independently of the polarization of normally-incident light. Furthermore, the quantum yield approaches that of commercial silicon photodiodes, with a responsivity exceeding 0.25 A/W for each channel. Our demonstration opens a new door to sub-wavelength pixelated CMOS sensors and promises future high-performance optoelectronic systems.
对于尺寸不断减小且性能不断增强的基本像素组件的需求,是当前包括成像、传感、光伏和通信在内的光电应用的核心。然而,像素的尺寸受到光波衍射基本限制的严重制约。目前使用透射滤光片和平面吸收层的发展可以缩小像素尺寸,但当像素尺寸接近波长尺度时,存在两个主要问题需要解决,即光学串扰和电气串扰。所有这些基本限制都阻碍了像素尺寸的持续减小和性能的提升。在此,我们展示了基于反厄米特超表面的互补金属氧化物半导体(CMOS)兼容平台中的亚波长尺度彩色像素。与传统像素形成鲜明对比的是,光谱滤波是通过结构色而非透射滤光片实现的,从而实现了同时高的颜色纯度和量子效率。结果,这种超过28,000个像素的亚波长反厄米特超表面传感器能够在可见光范围内的100纳米带宽内对三种颜色进行分类,而与正入射光的偏振无关。此外,量子产率接近商用硅光电二极管,每个通道的响应度超过0.25 A/W。我们的展示为亚波长像素化CMOS传感器打开了一扇新的大门,并有望实现未来的高性能光电系统。