Suppr超能文献

使用具有光反馈的半导体激光器进行并行和深度储层计算。

Parallel and deep reservoir computing using semiconductor lasers with optical feedback.

作者信息

Hasegawa Hiroshi, Kanno Kazutaka, Uchida Atsushi

机构信息

Department of Information and Computer Sciences, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan.

出版信息

Nanophotonics. 2022 Oct 17;12(5):869-881. doi: 10.1515/nanoph-2022-0440. eCollection 2023 Mar.

Abstract

Photonic reservoir computing has been intensively investigated to solve machine learning tasks effectively. A simple learning procedure of output weights is used for reservoir computing. However, the lack of training of input-node and inter-node connection weights limits the performance of reservoir computing. The use of multiple reservoirs can be a solution to overcome this limitation of reservoir computing. In this study, we investigate parallel and deep configurations of delay-based all-optical reservoir computing using semiconductor lasers with optical feedback by combining multiple reservoirs to improve the performance of reservoir computing. Furthermore, we propose a hybrid configuration to maximize the benefits of parallel and deep reservoirs. We perform the chaotic time-series prediction task, nonlinear channel equalization task, and memory capacity measurement. Then, we compare the performance of single, parallel, deep, and hybrid reservoir configurations. We find that deep reservoirs are suitable for a chaotic time-series prediction task, whereas parallel reservoirs are suitable for a nonlinear channel equalization task. Hybrid reservoirs outperform other configurations for all three tasks. We further optimize the number of reservoirs for each reservoir configuration. Multiple reservoirs show great potential for the improvement of reservoir computing, which in turn can be applied for high-performance edge computing.

摘要

为有效解决机器学习任务,人们对光子储层计算进行了深入研究。储层计算采用一种简单的输出权重学习过程。然而,输入节点和节点间连接权重缺乏训练限制了储层计算的性能。使用多个储层可能是克服储层计算这一限制的一种解决方案。在本研究中,我们通过组合多个储层来研究基于延迟的全光储层计算的并行和深度配置,该计算使用具有光反馈的半导体激光器,以提高储层计算的性能。此外,我们提出一种混合配置,以最大化并行和深度储层的优势。我们执行混沌时间序列预测任务、非线性信道均衡任务和存储容量测量。然后,我们比较单储层、并行储层、深度储层和混合储层配置的性能。我们发现深度储层适用于混沌时间序列预测任务,而并行储层适用于非线性信道均衡任务。混合储层在所有这三项任务中均优于其他配置。我们进一步针对每种储层配置优化储层数量。多个储层在改善储层计算方面显示出巨大潜力,进而可应用于高性能边缘计算。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468e/11501584/7f4ff7397d38/j_nanoph-2022-0440_fig_001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验