Suppr超能文献

光通信中的光子神经形态技术。

Photonic neuromorphic technologies in optical communications.

作者信息

Argyris Apostolos

机构信息

Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, Palma de Mallorca, 07122, Spain.

出版信息

Nanophotonics. 2022 Jan 19;11(5):897-916. doi: 10.1515/nanoph-2021-0578. eCollection 2022 Feb.

Abstract

Machine learning (ML) and neuromorphic computing have been enforcing problem-solving in many applications. Such approaches found fertile ground in optical communications, a technological field that is very demanding in terms of computational speed and complexity. The latest breakthroughs are strongly supported by advanced signal processing, implemented in the digital domain. Algorithms of different levels of complexity aim at improving data recovery, expanding the reach of transmission, validating the integrity of the optical network operation, and monitoring data transfer faults. Lately, the concept of reservoir computing (RC) inspired hardware implementations in photonics that may offer revolutionary solutions in this field. In a brief introduction, I discuss some of the established digital signal processing (DSP) techniques and some new approaches based on ML and neural network (NN) architectures. In the main part, I review the latest neuromorphic computing proposals that specifically apply to photonic hardware and give new perspectives on addressing signal processing in optical communications. I discuss the fundamental topologies in photonic feed-forward and recurrent network implementations. Finally, I review the photonic topologies that were initially tested for channel equalization benchmark tasks, and then in fiber transmission systems, for optical header recognition, data recovery, and modulation format identification.

摘要

机器学习(ML)和神经形态计算已在许多应用中强化了问题解决能力。这些方法在光通信领域找到了肥沃的土壤,光通信是一个在计算速度和复杂性方面要求极高的技术领域。最新的突破得到了数字域中实现的先进信号处理的有力支持。不同复杂度的算法旨在改善数据恢复、扩大传输范围、验证光网络运行的完整性以及监测数据传输故障。最近,储层计算(RC)的概念启发了光子学中的硬件实现,这可能在该领域提供革命性的解决方案。在简要介绍中,我讨论了一些既定的数字信号处理(DSP)技术以及一些基于ML和神经网络(NN)架构的新方法。在主要部分,我回顾了专门应用于光子硬件的最新神经形态计算提议,并给出了处理光通信中信号处理的新视角。我讨论了光子前馈和递归网络实现中的基本拓扑结构。最后,我回顾了最初用于信道均衡基准任务,然后在光纤传输系统中用于光包头识别、数据恢复和调制格式识别的光子拓扑结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5ff/11501306/b6d7ed531da5/j_nanoph-2021-0578_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验