Manuylovich Egor, Stoliarov Dmitrii, Saad David, Turitsyn Sergei K
Aston Institute of Photonic Technologies, Aston University, Birmingham, UK.
Aston Centre for Artificial Intelligence Research and Application, Aston University, Birmingham, UK.
Nanophotonics. 2025 Jun 19;14(16):2761-2778. doi: 10.1515/nanoph-2024-0614. eCollection 2025 Aug.
Mapping input signals to a high-dimensional space is a critical concept in various neuromorphic computing paradigms, including models such as reservoir computing (RC) and extreme learning machines (ELM). We propose using commercially available telecom devices and technologies developed for high-speed optical data transmission to implement these models through nonlinear mapping of optical signals into a high-dimensional space where linear processing can be applied. We manipulate the output feature dimension by applying temporal up-sampling (at the speed of commercially available telecom devices) of input signals and a well-established wave-division-multiplexing (WDM). Our up-sampling approach utilizes a trainable encoding mask, where each input symbol is replaced with a structured sequence of masked symbols, effectively increasing the representational capacity of the feature space. This gives remarkable flexibility in the of the input signal. We demonstrate this approach in the context of RC and ELM, employing readily available photonic devices, including a semiconductor optical amplifier and nonlinear Mach-Zehnder interferometer (MZI). We investigate how nonlinear mapping provided by these devices can be characterized in terms of the increased controlled separability and predictability of the output state.
将输入信号映射到高维空间是各种神经形态计算范式中的一个关键概念,包括诸如储层计算(RC)和极限学习机(ELM)等模型。我们建议使用为高速光数据传输而开发的商用电信设备和技术,通过将光信号非线性映射到可以应用线性处理的高维空间来实现这些模型。我们通过对输入信号应用时间上采样(以商用电信设备的速度)和成熟的波分复用(WDM)来操纵输出特征维度。我们的上采样方法利用了一个可训练的编码掩码,其中每个输入符号被替换为一个结构化的掩码符号序列,有效地增加了特征空间的表示能力。这在输入信号的处理方面提供了显著的灵活性。我们在RC和ELM的背景下演示了这种方法,使用了现成的光子器件,包括半导体光放大器和非线性马赫-曾德尔干涉仪(MZI)。我们研究了这些器件提供的非线性映射如何根据输出状态增加的可控可分离性和可预测性来表征。