Suppr超能文献

半导体超表面中的超快Q值提升

Ultrafast Q-boosting in semiconductor metasurfaces.

作者信息

Yang Ziwei, Liu Mingkai, Smirnova Daria, Komar Andrei, Shcherbakov Maxim, Pertsch Thomas, Neshev Dragomir

机构信息

ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Department of Electronics Materials Engineering, Research School of Physics, Australian National University, Canberra, ACT 2600, Australia.

Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Straße 15, 07745 Jena, Germany.

出版信息

Nanophotonics. 2024 Feb 19;13(12):2173-2182. doi: 10.1515/nanoph-2023-0718. eCollection 2024 May.

Abstract

All-optical tunability of semiconductor metasurfaces offers unique opportunities for novel time-varying effects, including frequency conversion and light trapping. However, the all-optical processes often induce optical absorption that fundamentally limits the possible dynamic increase of their quality factor (Q-boosting). Here, we propose and numerically demonstrate the concept of large Q-boosting in a single-material metasurface by dynamically reducing its structural anisotropy on a femtosecond timescale. This balance is achieved by excitation with a structured pump and takes advantage of the band-filling effect in a GaAs direct-bandgap semiconductor to eliminate the free-carrier-induced loss. We show that this approach allows a dynamic boosting of the resonance quality factor over orders of magnitude, only limited by the free-carrier relaxation processes. The proposed approach offers complete dynamic control over the resonance bandwidth and opens applications in frequency conversion and light trapping.

摘要

半导体超表面的全光可调性为新型时变效应提供了独特机遇,包括频率转换和光捕获。然而,全光过程通常会引发光吸收,这从根本上限制了其品质因数(Q值提升)可能的动态增加。在此,我们提出并通过数值模拟证明了在单材料超表面中通过在飞秒时间尺度上动态降低其结构各向异性来实现大幅Q值提升的概念。这种平衡通过用结构化泵浦进行激发来实现,并利用GaAs直接带隙半导体中的能带填充效应来消除自由载流子诱导的损耗。我们表明,这种方法能够在仅受自由载流子弛豫过程限制的情况下,将共振品质因数动态提升多个数量级。所提出的方法提供了对共振带宽的完全动态控制,并开启了在频率转换和光捕获方面的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbce/11501241/733bbc3eb2d8/j_nanoph-2023-0718_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验