Shafirin Pavel A, Zubyuk Varvara V, Fedyanin Andrey A, Shcherbakov Maxim R
Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia.
Department of Electrical Engineering and Computer Science, University of CA, Irvine 92697, CA, USA.
Nanophotonics. 2022 May 18;11(17):4053-4061. doi: 10.1515/nanoph-2022-0082. eCollection 2022 Sep.
Resonant nanostructures, such as photonic metasurfaces, have created an unprecedented case for enhanced light-matter interactions through local field engineering. However, the presence of resonances fundamentally limits the bandwidth of such interactions. Here, we report on amending the nonlinear optical response of a semiconducting metasurface through Q-boosting, where the Q-factor of a metasurface rapidly increases with time. The coupled-mode theory reveals overcoming the bandwidth limit by coupling a broadband signal to a bandwidth-matched resonance and Q-boosting at a timescale faster than a resonator lifetime. A control-excitation experiment simulation using a tailored Q-boosting silicon-germanium metasurface predicts the third-harmonic enhancement by factors of 8 (peak) and 4.5 (integrated) against the best-case static metasurface. An analysis of free-carrier losses based on experimental data shows robustness to nonradiative losses and offers a viable pathway to increasing the light-matter interactions beyond the bandwidth limit, with implications in nonlinear and quantum optics, sensing, and telecommunication technologies.
诸如光子超表面之类的共振纳米结构,通过局部场工程为增强光与物质的相互作用创造了前所未有的条件。然而,共振的存在从根本上限制了这种相互作用的带宽。在此,我们报告通过品质因数提升来修正半导体超表面的非线性光学响应,其中超表面的品质因数随时间迅速增加。耦合模理论表明,通过将宽带信号耦合到带宽匹配的共振并在比谐振器寿命更快的时间尺度上进行品质因数提升,可以克服带宽限制。使用定制的品质因数提升硅锗超表面进行的控制激发实验模拟预测,与最佳情况的静态超表面相比,三次谐波增强了8倍(峰值)和4.5倍(积分)。基于实验数据对自由载流子损耗的分析表明,该方法对非辐射损耗具有鲁棒性,并为突破带宽限制增加光与物质的相互作用提供了一条可行途径,这对非线性和量子光学、传感及电信技术具有重要意义。