Suppr超能文献

CerviFusionNet:一种用于增强宫颈病变多分类的多模态混合卷积神经网络-Transformer-门控循环单元模型。

CerviFusionNet: A multi-modal, hybrid CNN-transformer-GRU model for enhanced cervical lesion multi-classification.

作者信息

Sha Yuyang, Zhang Qingyue, Zhai Xiaobing, Hou Menghui, Lu Jingtao, Meng Weiyu, Wang Yuefei, Li Kefeng, Ma Jing

机构信息

Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau SAR 999078, China.

First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China.

出版信息

iScience. 2024 Nov 2;27(12):111313. doi: 10.1016/j.isci.2024.111313. eCollection 2024 Dec 20.

Abstract

Cervical lesions pose a significant threat to women's health worldwide. Colposcopy is essential for screening and treating cervical lesions, but its effectiveness depends on the doctor's experience. Artificial intelligence-based solutions via colposcopy images have shown great potential in cervical lesions screening. However, some challenges still need to be addressed, such as low algorithm performance and lack of high-quality multi-modal datasets. Here, we established a multi-modal colposcopy dataset of 2,273 HPV+ patients, comprising original colposcopy images, acetic acid reactions at 60s and 120s, iodine staining, diagnostic reports, and pathological results. Utilizing this dataset, we developed CerviFusionNet, a hybrid architecture that merges convolutional neural networks and vision transformers to learn robust representations. We designed a temporal module to capture dynamic changes in acetic acid sequences, which can boost the model performance without sacrificing inference speed. Compared with several existing methods, CerviFusionNet demonstrated excellent accuracy and efficiency.

摘要

宫颈病变对全球女性健康构成重大威胁。阴道镜检查对于宫颈病变的筛查和治疗至关重要,但其有效性取决于医生的经验。基于人工智能的阴道镜图像解决方案在宫颈病变筛查中显示出巨大潜力。然而,仍有一些挑战需要解决,例如算法性能低和缺乏高质量的多模态数据集。在此,我们建立了一个包含2273名HPV阳性患者的多模态阴道镜数据集,包括原始阴道镜图像、60秒和120秒时的醋酸反应、碘染色、诊断报告和病理结果。利用该数据集,我们开发了CerviFusionNet,这是一种融合卷积神经网络和视觉Transformer以学习鲁棒表示的混合架构。我们设计了一个时间模块来捕捉醋酸序列的动态变化,这可以在不牺牲推理速度的情况下提高模型性能。与几种现有方法相比,CerviFusionNet表现出优异的准确性和效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6335/11615576/495d0b52131a/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验