IEEE Trans Med Imaging. 2023 Jun;42(6):1696-1706. doi: 10.1109/TMI.2023.3236011. Epub 2023 Jun 1.
Ultrasonography is an important routine examination for breast cancer diagnosis, due to its non-invasive, radiation-free and low-cost properties. However, the diagnostic accuracy of breast cancer is still limited due to its inherent limitations. Then, a precise diagnose using breast ultrasound (BUS) image would be significant useful. Many learning-based computer-aided diagnostic methods have been proposed to achieve breast cancer diagnosis/lesion classification. However, most of them require a pre-define region of interest (ROI) and then classify the lesion inside the ROI. Conventional classification backbones, such as VGG16 and ResNet50, can achieve promising classification results with no ROI requirement. But these models lack interpretability, thus restricting their use in clinical practice. In this study, we propose a novel ROI-free model for breast cancer diagnosis in ultrasound images with interpretable feature representations. We leverage the anatomical prior knowledge that malignant and benign tumors have different spatial relationships between different tissue layers, and propose a HoVer-Transformer to formulate this prior knowledge. The proposed HoVer-Trans block extracts the inter- and intra-layer spatial information horizontally and vertically. We conduct and release an open dataset GDPH&SYSUCC for breast cancer diagnosis in BUS. The proposed model is evaluated in three datasets by comparing with four CNN-based models and three vision transformer models via five-fold cross validation. It achieves state-of-the-art classification performance (GDPH&SYSUCC AUC: 0.924, ACC: 0.893, Spec: 0.836, Sens: 0.926) with the best model interpretability. In the meanwhile, our proposed model outperforms two senior sonographers on the breast cancer diagnosis when only one BUS image is given (GDPH&SYSUCC-AUC ours: 0.924 vs. reader1: 0.825 vs. reader2: 0.820).
超声成像是乳腺癌诊断的重要常规检查方法,因为它具有非侵入性、无辐射和低成本的特点。然而,由于其固有的局限性,乳腺癌的诊断准确性仍然有限。那么,使用乳腺超声(BUS)图像进行精确诊断将是非常有用的。许多基于学习的计算机辅助诊断方法已经被提出,以实现乳腺癌诊断/病变分类。然而,大多数方法都需要预定义感兴趣区域(ROI),然后对 ROI 内的病变进行分类。传统的分类骨干网络,如 VGG16 和 ResNet50,可以在不需要 ROI 的情况下实现有前途的分类结果。但是,这些模型缺乏可解释性,因此限制了它们在临床实践中的应用。在这项研究中,我们提出了一种新的无 ROI 的模型,用于超声图像中的乳腺癌诊断,并具有可解释的特征表示。我们利用恶性和良性肿瘤在不同组织层之间具有不同空间关系的解剖学先验知识,提出了 HoVer-Transformer 来形式化这种先验知识。所提出的 HoVer-Trans 块水平和垂直地提取层间和层内的空间信息。我们进行并发布了一个开放的 GDPH&SYSUCC 数据集,用于 BUS 中的乳腺癌诊断。该模型在三个数据集上进行了评估,通过五重交叉验证与四个基于 CNN 的模型和三个视觉转换器模型进行比较。它在三个数据集上实现了最先进的分类性能(GDPH&SYSUCC AUC:0.924、ACC:0.893、Spec:0.836、Sens:0.926),并具有最佳的模型可解释性。同时,当只提供一个 BUS 图像时,我们的模型在乳腺癌诊断方面优于两位高级超声医师(GDPH&SYSUCC-AUC 我们的:0.924 与读者 1:0.825 与读者 2:0.820)。