Suppr超能文献

非洲受影响最严重国家猴痘疫情趋势的时间序列建模与预测。

Time series modelling and forecasting of Monkeypox outbreak trends Africa's in most affected countries.

作者信息

Jena Diptismita, Sridhar Sathvik Belagodu, Shareef Javedh, Talath Sirajunisa, Ballal Suhas, Kumar Sanjay, Bhat Mahakshit, Sharma Shilpa, Kumar M Ravi, Chauhan Ashish Singh, Gaidhane Abhay M, Agarwal Neha, Bushi Ganesh, Shabil Muhammed, Zahiruddin Quazi Syed, Mohanty Aroop, Al-Tawfiq Jaffar A, Sah Ranjit

机构信息

Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.

RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, 11172, United Arab Emirates.

出版信息

New Microbes New Infect. 2024 Nov 14;62:101526. doi: 10.1016/j.nmni.2024.101526. eCollection 2024 Dec.

Abstract

BACKGROUND

The recent outbreak of Monkeypox (Mpox), particularly the clade 1b variant, have shifted the epidemiological landscape, making it a Public Health Emergency of International Concern. Africa remains a hotspot with significant ongoing outbreaks, necessitating a focused study on outbreak trends and forecasting to guide health interventions.

METHODS

This study utilizes a comprehensive dataset from the four most affected African countries, covering weekly and cumulative Mpox cases from August 6, 2023, to August 18, 2024. Time series analysis techniques, including ARIMA models and Join Point Regression, were employed to forecast Mpox trends and analyse the annual percentage change in new cases.

RESULTS

Descriptive statistics highlighted significant variability in Mpox cases across the studied regions with the mean cases in Africa at 72.55 and a high standard deviation of 60.885. Forecasting models suggest a continued increase in Mpox cases, with cumulative cases expected to reach 6922.95 by the 65th week (95 % CI: 6158.62 to 7687.27) and new cases projected at 45.93 (95 % CI: -88.17 to 180.04).

CONCLUSION

The study underscores the persistent nature of Mpox outbreaks in Africa and the critical need for continuous surveillance and adaptive public health strategies. The forecasts generated offer valuable insights into potential future trends, aiding in the allocation of resources and the implementation of targeted health interventions to curb the spread of the disease.

摘要

背景

最近猴痘(Mpox)疫情爆发,尤其是1b分支变种,改变了流行病学态势,使其成为国际关注的突发公共卫生事件。非洲仍然是疫情严重爆发的热点地区,因此有必要开展针对性研究,以了解疫情趋势并进行预测,从而指导卫生干预措施。

方法

本研究使用了来自四个受影响最严重的非洲国家的综合数据集,涵盖了2023年8月6日至2024年8月18日的每周和累计猴痘病例。采用了时间序列分析技术,包括自回归积分滑动平均(ARIMA)模型和连接点回归,来预测猴痘趋势并分析新发病例的年度百分比变化。

结果

描述性统计突出显示了各研究地区猴痘病例的显著差异,非洲的平均病例数为72.55,标准差高达60.885。预测模型表明,猴痘病例将持续增加,预计到第65周累计病例数将达到6922.95(95%置信区间:6158.62至7687.27),新发病例预计为45.93(95%置信区间:-88.17至180.04)。

结论

该研究强调了非洲猴痘疫情的持续性,以及持续监测和适应性公共卫生策略的迫切需求。所生成的预测为潜在的未来趋势提供了有价值的见解,有助于资源分配和实施有针对性的卫生干预措施,以遏制疾病传播。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73b1/11616522/cf90706d2a12/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验