Huang Xiaoying, Yang Jiawei, Song Changkun, Rao Mujie, Yu Ying, Yu Siyuan
State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China.
Nanophotonics. 2022 May 25;11(13):3093-3100. doi: 10.1515/nanoph-2022-0120. eCollection 2022 Jun.
Epitaxial semiconductor quantum dots (QDs) have been demonstrated as on-demand entangled photon sources through biexciton-exciton (XX-X) cascaded radiative processes. However, perfect entangled photon emitters at the specific wavelengths of 880 nm or 980 nm, that are important for heralded entanglement distribution by absorptive quantum memories, remain a significant challenge. We successfully extend the QD emission wavelength to 880 nm via capping Stranski-Krastanow grown In(Ga)As/GaAs QDs with an ultra-thin Al Ga As layer. After carefully investigating the mechanisms governing the vanishing of wetting-layer (WL) states and the anisotropy of QDs, we optimize the growth conditions and achieve a strong suppression of the WL emission as well as a measured minor fine structure splitting of only ∼(3.2 ± 0.25) μeV for the exciton line. We further extend this method to fabricate In(Ga)As QDs emitted at 980 nm via introducing InGaAs capping layer, and demonstrate a two-photon resonant excitation of the biexciton without any additional optical or electrical stabilized source. These QDs with high symmetry and stability represent a highly promising platform for the generation of polarization entanglement and experiments on the interaction of photons from dissimilar sources, such as rare-earth-ion-doped crystals for solid quantum memory.
外延半导体量子点(QD)已通过双激子 - 激子(XX - X)级联辐射过程被证明是按需纠缠光子源。然而,对于通过吸收型量子存储器进行预示纠缠分布很重要的880纳米或980纳米特定波长的完美纠缠光子发射器,仍然是一项重大挑战。我们通过用超薄AlGaAs层覆盖斯特兰斯基 - 克拉斯坦诺夫生长的In(Ga)As/GaAs量子点,成功将量子点发射波长扩展到880纳米。在仔细研究了控制润湿层(WL)态消失和量子点各向异性的机制后,我们优化了生长条件,实现了对WL发射的强烈抑制,并且测得激子线的微小精细结构分裂仅为约(3.2±0.25)微电子伏特。我们进一步扩展该方法,通过引入InGaAs覆盖层来制造发射波长为980纳米的In(Ga)As量子点,并展示了双激子的双光子共振激发,无需任何额外的光学或电学稳定源。这些具有高对称性和稳定性的量子点代表了一个极具前景的平台,可用于产生偏振纠缠以及进行来自不同源(如用于固体量子存储器的稀土离子掺杂晶体)的光子相互作用实验。