Lian Yiling, Jiang Lan, Sun Jingya, Tao Wenpan, Chen Zhicheng, Lin Gen, Ning Ziqian, Ye Manlou
Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China.
Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, P.R. China.
Nanophotonics. 2023 Nov 30;12(24):4461-4473. doi: 10.1515/nanoph-2023-0497. eCollection 2023 Dec.
The significance of ultrafast laser-induced energy and mass transfer at interfaces has been growing in the field of nanoscience and technology. Nevertheless, the complexity arising from non-linear and non-equilibrium optical-thermal-mechanical interactions results in intricate transitional behaviors. This complexity presents challenges when attempting to analyze these phenomena exclusively through modeling or experimentation. In this study, we conduct time-resolved reflective pump-probe imaging and molecular-dynamics coupled two-temperature model (MD-TTM) simulations to investigate the ultrafast dynamics and ablation mechanism of Au/Ti bilayer systems. The calculated energy absorption curves indicate that Au film reduces the energy deposition in the underlying Ti layer, resulting in reduced melting and evaporation rate of Ti. The phase transition process induces different mechanical responses. The potential energy patterns indicate that the expansion of vapor Ti extrudes the surface Au layer outward. In simulated stress distribution images, the Au layer can hamper the expansion of the vapor-phase Ti and brings dynamic compressive stress to the residual Ti layer. When the compressive stress transforms into tensile stress, the material is removed through mechanical damage. Therefore, both Au and Ti in the 20 nm Au-covered Ti are completely removed. Our approach elucidates the ablation mechanism within the Au/Ti bilayer system and offers fresh insights into managing thermo-mechanical responses within analogous systems.
超快激光诱导的界面能量和质量转移在纳米科学与技术领域的重要性日益凸显。然而,非线性和非平衡光热机械相互作用所产生的复杂性导致了复杂的过渡行为。当试图仅通过建模或实验来分析这些现象时,这种复杂性带来了挑战。在本研究中,我们进行了时间分辨反射泵浦 - 探测成像以及分子动力学耦合双温度模型(MD - TTM)模拟,以研究Au/Ti双层系统的超快动力学和烧蚀机制。计算得到的能量吸收曲线表明,Au膜减少了下层Ti层中的能量沉积,导致Ti的熔化和蒸发速率降低。相变过程引发了不同的力学响应。势能模式表明,气态Ti的膨胀将表面Au层向外挤压。在模拟的应力分布图像中,Au层会阻碍气相Ti的膨胀,并给残余Ti层带来动态压应力。当压应力转变为拉应力时,材料通过机械损伤被去除。因此,20nm Au覆盖的Ti中的Au和Ti都被完全去除。我们的方法阐明了Au/Ti双层系统内的烧蚀机制,并为管理类似系统中的热机械响应提供了新的见解。