Suppr超能文献

基于植被指数的北方森林叶面积指数和冠层郁闭度估计中同期哨兵-2和环境制图与分析计划(EnMAP)数据的比较

Comparison of contemporaneous Sentinel-2 and EnMAP data for vegetation index-based estimation of leaf area index and canopy closure of a boreal forest.

作者信息

Juola Jussi, Hovi Aarne, Rautiainen Miina

机构信息

Department of Built Environment, School of Engineering, Aalto University, Aalto, Finland.

出版信息

Eur J Remote Sens. 2024 Nov 27;57(1):2432975. doi: 10.1080/22797254.2024.2432975. eCollection 2024.

Abstract

Data from the new hyperspectral satellite missions such as EnMAP are anticipated to refine leaf area index (LAI) or canopy closure (CC) monitoring in conifer-dominated forest areas. We compared contemporaneous multispectral and hyperspectral satellite images from Sentinel-2 MSI (S2) and EnMAP and assessed whether hyperspectral images offer added value in estimating LAI, effective LAI (LAIeff), and CC in a European boreal forest area. The estimations were performed using univariate and multivariate generalized additive models. The models utilized field measurements of LAI and CC from 38 forest plots and an extensive set of vegetation indices (VIs) derived from the satellite data. The best univariate models for each of the three response variables had small differences between the two sensors, but in general, EnMAP had more well-performing VIs which was reflected in the better multivariate model performances. The best performing multivariate models with the EnMAP data had ~1-6% lower relative RMSEs than S2. Wavelengths near the green, red-edge, and shortwave infrared regions were frequently utilized in estimating LAI, LAIeff, and CC with EnMAP data. Because EnMAP could estimate LAI better, the results suggest that EnMAP may be more useful than multispectral satellite sensors, such as S2, in monitoring biophysical variables of coniferous-dominated forests.

摘要

诸如环境映射与分析计划(EnMAP)等新型高光谱卫星任务所获取的数据,有望改善以针叶树为主的森林地区叶面积指数(LAI)或冠层郁闭度(CC)的监测情况。我们对比了哨兵-2多光谱成像仪(Sentinel-2 MSI,S2)和EnMAP同期的多光谱与高光谱卫星图像,并评估了高光谱图像在估算欧洲北方森林地区的LAI、有效叶面积指数(LAIeff)和CC方面是否具有附加价值。估算采用单变量和多变量广义相加模型进行。这些模型利用了来自38个森林样地的LAI和CC实地测量数据以及从卫星数据中得出的大量植被指数(VI)。对于三个响应变量中的每一个,最佳单变量模型在两种传感器之间差异较小,但总体而言,EnMAP具有更多表现良好的VI,这在更好的多变量模型性能中得到了体现。使用EnMAP数据的最佳多变量模型的相对均方根误差(RMSE)比S2低约1%-6%。在利用EnMAP数据估算LAI、LAIeff和CC时,经常会用到绿光、红边和短波红外区域附近的波长。由于EnMAP能够更好地估算LAI,结果表明,在监测以针叶树为主的森林的生物物理变量方面,EnMAP可能比多光谱卫星传感器(如S2)更有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec4e/11614049/6a841955ec5e/TEJR_A_2432975_F0001_OC.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验