Morcillo-Pallarés Pablo, Rivera-Caicedo Juan Pablo, Belda Santiago, De Grave Charlotte, Burriel Helena, Moreno Jose, Verrelst Jochem
Image Processing Laboratory (IPL), Parc Científic, Universitat de València, 46980 Paterna, València, Spain.
CONACyT-UAN, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura Amado Nervo, Tepic 63155, Nayarit, Mexico.
Remote Sens (Basel). 2019 Oct 18;11(20):2418. doi: 10.3390/rs11202418.
Vegetation indices (VIs) are widely used in optical remote sensing to estimate biophysical variables of vegetated surfaces. With the advent of spectroscopy technology, spectral bands can be combined in numerous ways to extract the desired information. This resulted in a plethora of proposed indices, designed for a diversity of applications and research purposes. However, it is not always clear whether they are sensitive to the variable of interest while at the same time, responding insensitive to confounding factors. Hence, to be able to quantify the robustness of VIs, a systematic evaluation is needed, thereby introducing a widest possible variety of biochemical and structural heterogeneity. Such exercise can be achieved with coupled leaf and canopy radiative transfer models (RTMs), whereby input variables can virtually simulate any vegetation scenario. With the intention of evaluating multiple VIs in an efficient way, this led us to the development of a global sensitivity analysis (GSA) toolbox dedicated to the analysis of VIs on their sensitivity towards RTM input variables. We identified VIs that are designed to be sensitive towards leaf chlorophyll content (LCC), leaf water content (LWC) and leaf area index (LAI) for common sensors of terrestrial Earth observation satellites: Landsat 8, MODIS, Sentinel-2, Sentinel-3 and the upcoming imaging spectrometer mission EnMAP. The coupled RTMs PROSAIL and PROINFORM were used for simulations of homogeneous and forest canopies respectively. GSA total sensitivity results suggest that LCC-sensitive indices respond most robust: for the great majority of scenarios, chlorophyll a + b content (Cab) drives between 75% and 82% of the indices' variability. LWC-sensitive indices were most affected by confounding variables such as Cab and LAI, although the equivalent water thickness (Cw) can drive between 25% and 50% of the indices' variability. Conversely, the majority of LAI-sensitive indices are not only sensitive to LAI but rather to a mixture of structural and biochemical variables.
植被指数(VIs)在光学遥感中被广泛用于估算植被表面的生物物理变量。随着光谱技术的出现,光谱波段可以通过多种方式组合以提取所需信息。这导致了大量提出的指数,这些指数针对各种应用和研究目的而设计。然而,它们是否对感兴趣的变量敏感,同时对混杂因素不敏感,这并不总是很清楚。因此,为了能够量化植被指数的稳健性,需要进行系统评估,从而引入尽可能广泛的生化和结构异质性。这样的工作可以通过耦合的叶片和冠层辐射传输模型(RTMs)来实现,通过该模型,输入变量可以虚拟模拟任何植被场景。为了以高效的方式评估多个植被指数,这促使我们开发了一个全球敏感性分析(GSA)工具箱,专门用于分析植被指数对RTM输入变量的敏感性。我们确定了针对陆地地球观测卫星的常见传感器(Landsat 8、MODIS、Sentinel - 2、Sentinel - 3以及即将到来的成像光谱仪任务EnMAP)设计的对叶片叶绿素含量(LCC)、叶片含水量(LWC)和叶面积指数(LAI)敏感的植被指数。耦合的RTMs PROSAIL和PROINFORM分别用于均匀冠层和森林冠层的模拟。GSA总敏感性结果表明,对LCC敏感的指数响应最为稳健:在绝大多数情况下,叶绿素a + b含量(Cab)驱动指数变异性的75%至82%。对LWC敏感的指数受Cab和LAI等混杂变量的影响最大,尽管等效水厚度(Cw)可以驱动指数变异性的25%至50%。相反,大多数对LAI敏感的指数不仅对LAI敏感,而且对结构和生化变量的混合敏感。