Suppr超能文献

原子级薄超晶格中表面激子极化激元的导向光

Guiding light with surface exciton-polaritons in atomically thin superlattices.

作者信息

Elrafei Sara A, Raziman T V, de Vega Sandra, García de Abajo F Javier, Curto Alberto G

机构信息

Department of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.

出版信息

Nanophotonics. 2024 May 20;13(17):3101-3111. doi: 10.1515/nanoph-2024-0075. eCollection 2024 Jul.

Abstract

Two-dimensional materials give access to the ultimate physical limits of photonics with appealing properties for ultracompact optical components such as waveguides and modulators. Specifically, in monolayer semiconductors, a strong excitonic resonance leads to a sharp oscillation in permittivity from positive to even negative values. This extreme optical response enables surface exciton-polaritons to guide visible light bound to an atomically thin layer. However, such ultrathin waveguides support a transverse electric (TE) mode with low confinement and a transverse magnetic (TM) mode with short propagation. Here, we propose that realistic semiconductor-insulator-semiconductor superlattices comprising monolayer WS and hexagonal boron nitride (hBN) can improve the properties of both TE and TM modes. Compared to a single monolayer, a heterostructure with a 1-nm hBN spacer separating two monolayers enhances the confinement of the TE mode from 1.2 to around 0.5 μm, while the out-of-plane extension of the TM mode increases from 25 to 50 nm. We propose two simple additivity rules for mode confinement valid in the ultrathin film approximation for heterostructures with increasing spacer thickness. Stacking additional WS monolayers into superlattices further enhances the waveguiding properties. Our results underscore the potential of monolayer-based superlattices as a platform for visible-range nanophotonics with promising optical, electrical, and magnetic tunability.

摘要

二维材料可实现光子学的极限物理性能,具备如波导和调制器等超紧凑光学元件所需的诱人特性。具体而言,在单层半导体中,强烈的激子共振会导致介电常数从正值急剧振荡至负值。这种极端的光学响应使得表面激子极化激元能够引导束缚在原子级薄层中的可见光。然而,这种超薄波导支持横向电场(TE)模式,但限制较低,以及横向磁场(TM)模式,但传播距离较短。在此,我们提出由单层WS和六方氮化硼(hBN)组成的实际半导体 - 绝缘体 - 半导体超晶格能够改善TE和TM模式的性能。与单个单层相比,具有1纳米hBN间隔层分隔两个单层的异质结构将TE模式的限制从1.2提高到约0.5微米,而TM模式的面外延伸从25纳米增加到50纳米。我们提出了两个简单的加性规则用于模式限制,这些规则在间隔层厚度增加的异质结构的超薄膜近似中有效。将额外的WS单层堆叠成超晶格可进一步增强波导特性。我们的结果强调了基于单层的超晶格作为具有有前景的光学、电学和磁学可调性的可见光谱范围纳米光子学平台的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d144/11501836/f3a06d798867/j_nanoph-2024-0075_fig_001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验