Physics Department, University of Michigan, 450 Church Street, Ann Arbor, MI, 48109-2122, USA.
Applied Physics Program, University of Michigan, 450 Church Street, Ann Arbor, MI, 48109-1040, USA.
Nat Commun. 2018 Feb 19;9(1):713. doi: 10.1038/s41467-018-03188-x.
Semiconductor microcavity polaritons, formed via strong exciton-photon coupling, provide a quantum many-body system on a chip, featuring rich physics phenomena for better photonic technology. However, conventional polariton cavities are bulky, difficult to integrate, and inflexible for mode control, especially for room-temperature materials. Here we demonstrate sub-wavelength-thick, one-dimensional photonic crystals as a designable, compact, and practical platform for strong coupling with atomically thin van der Waals crystals. Polariton dispersions and mode anti-crossings are measured up to room temperature. Non-radiative decay to dark excitons is suppressed due to polariton enhancement of the radiative decay. Unusual features, including highly anisotropic dispersions and adjustable Fano resonances in reflectance, may facilitate high temperature polariton condensation in variable dimensions. Combining slab photonic crystals and van der Waals crystals in the strong coupling regime allows unprecedented engineering flexibility for exploring novel polariton phenomena and device concepts.
半导体微腔中的极化激元通过强激子-光子耦合形成,在芯片上提供了一个量子多体系统,具有丰富的物理现象,可用于更好的光子技术。然而,传统的极化激元腔体积庞大,难以集成,模式控制也不灵活,尤其是对于室温材料。在这里,我们展示了亚波长厚的一维光子晶体,作为一种可设计、紧凑且实用的平台,可与原子层厚的范德华晶体实现强耦合。在室温下测量了极化激元的色散和模式反交叉。由于极化激元增强了辐射衰减,非辐射衰减到暗激子的过程被抑制。异常特征包括在反射率中具有高度各向异性的色散和可调谐的 Fano 共振,这可能有利于在不同维度下实现高温极化激元凝聚。在强耦合区域中将平板光子晶体和范德华晶体结合在一起,为探索新的极化激元现象和器件概念提供了前所未有的工程灵活性。