Karvounis Artemios, Grange Rachel
Department of Physics, Optical Nanomaterial Group, Institute for Quantum Electronics, ETH Zurich, Auguste-Piccard-Hof 1, 8093 Zurich, Switzerland.
Nanophotonics. 2022 May 30;11(17):3993-4000. doi: 10.1515/nanoph-2022-0105. eCollection 2022 Sep.
Barium titanate (BaTiO) is a lead-free ferroelectric crystal used in electro-mechanical transducers and electro-optic films. Nanomechanical devices based on thin films of BaTiO are still unavailable, as the internal stress of thin ferroelectric films results in brittle fracture. Here, we use the electro-mechanical force to fabricate deformable assemblies (nanobeams) of BaTiO nanocrystals, on top of plasmonic metasurfaces. The mechanical deformation of the nanobeams is driven by the piezoelectric response of the BaTiO nanocrystals. The plasmonic-ferroelectric nanostructures due to the plasmonic enhancement enable subwavelength interaction lengths and support reflection modulation up to 2.936 ± 0.008%. Their frequency response is tested across 50 kHz up to 2 MHz and is dependent on the mechanical oscillations of the deformable BaTiO nanobeams. The ferroelectric nanobeams support mechanical nonlinearities, which offer additional control over the electro-mechanical to optical conversion.
钛酸钡(BaTiO)是一种无铅铁电晶体,用于机电换能器和电光薄膜。基于BaTiO薄膜的纳米机械设备仍然无法实现,因为铁电薄膜的内应力会导致脆性断裂。在此,我们利用机电力在等离子体超表面上制造了BaTiO纳米晶体的可变形组件(纳米梁)。纳米梁的机械变形由BaTiO纳米晶体的压电响应驱动。由于等离子体增强作用,等离子体-铁电纳米结构实现了亚波长相互作用长度,并支持高达2.936±0.008%的反射调制。它们的频率响应在50kHz至2MHz范围内进行了测试,并且取决于可变形BaTiO纳米梁的机械振荡。铁电纳米梁支持机械非线性,这为机电到光学的转换提供了额外的控制。