Wu Marcelo, Zeuthen Emil, Balram Krishna Coimbatore, Srinivasan Kartik
Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
Phys Rev Appl. 2020 Jan;13(1). doi: 10.1103/physrevapplied.13.014027.
The successes of superconducting quantum circuits at local manipulation of quantum information and photonics technology at long-distance transmission of the same have spurred interest in the development of quantum transducers for efficient, low-noise, and bidirectional frequency conversion of photons between the microwave and optical domains. We propose to realize such functionality through the coupling of electrical, piezoelectric, and optomechanical resonators. The coupling of the mechanical subsystems enables formation of a resonant mechanical supermode that provides a mechanically-mediated, efficient single interface to both the microwave and optical domains. The conversion process is analyzed by applying an equivalent circuit model that relates device-level parameters to overall figures of merit for conversion efficiency and added noise . These can be further enhanced by proper impedance matching of the transducer to an input microwave transmission line. The performance of potential transducers is assessed through finite-element simulations, with a focus on geometries in GaAs, followed by considerations of the AlN, LiNbO, and AlN-on-Si platforms. We present strategies for maximizing and minimizing , and find that simultaneously achieving > 50 % and < 0.5 should be possible with current technology. We find that the use of a mechanical supermode for mediating transduction is a key enabler for high-efficiency operation, particularly when paired with an appropriate microwave impedance matching network. Our comprehensive analysis of the full transduction chain enables us to outline a development path for the realization of high-performance quantum transducers that will constitute a valuable resource for quantum information science.
超导量子电路在量子信息的局部操纵方面取得的成功,以及光子技术在相同信息的长距离传输方面取得的成功,激发了人们对开发量子换能器的兴趣,这种换能器可在微波和光域之间对光子进行高效、低噪声和双向频率转换。我们建议通过电谐振器、压电谐振器和光机械谐振器的耦合来实现这种功能。机械子系统的耦合能够形成一种谐振机械超模,该超模为微波和光域提供一个通过机械介导的高效单一接口。通过应用一个等效电路模型来分析转换过程,该模型将器件级参数与转换效率和附加噪声的整体品质因数联系起来。通过将换能器与输入微波传输线进行适当的阻抗匹配,可以进一步提高这些参数。通过有限元模拟评估潜在换能器的性能,重点关注砷化镓中的几何结构,随后考虑氮化铝、铌酸锂和硅基氮化铝平台。我们提出了最大化和最小化的策略,发现利用当前技术同时实现>50%和<0.5应该是可行的。我们发现,使用机械超模来介导转换是高效运行的关键因素,特别是当与合适的微波阻抗匹配网络配合使用时。我们对整个转换链的全面分析使我们能够勾勒出实现高性能量子换能器的发展路径,这将为量子信息科学提供宝贵的资源。