Mei Hongyan, Koch Alexander, Wan Chenghao, Rensberg Jura, Zhang Zhen, Salman Jad, Hafermann Martin, Schaal Maximilian, Xiao Yuzhe, Wambold Raymond, Ramanathan Shriram, Ronning Carsten, Kats Mikhail A
Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
Institute of Solid State Physics, Friedrich Schiller University Jena, Jena, 07743, Germany,
Nanophotonics. 2022 Jun 13;11(17):3923-3932. doi: 10.1515/nanoph-2022-0050. eCollection 2022 Sep.
We demonstrate spatial modification of the optical properties of thin-film metal oxides, zinc oxide (ZnO) and vanadium dioxide (VO) as representatives, using a commercial focused ion beam (FIB) system. Using a Ga FIB and thermal annealing, we demonstrated variable doping of a wide-bandgap semiconductor, ZnO, achieving carrier concentrations from 10 cm to 10 cm. Using the same FIB without subsequent thermal annealing, we defect-engineered a correlated semiconductor, VO, locally modifying its insulator-to-metal transition (IMT) temperature by up to ∼25 °C. Such area-selective modification of metal oxides by direct writing using a FIB provides a simple, mask-less route to the fabrication of optical structures, especially when multiple or continuous levels of doping or defect density are required.
我们使用商用聚焦离子束(FIB)系统展示了薄膜金属氧化物(以氧化锌(ZnO)和二氧化钒(VO)为代表)光学性质的空间改性。通过使用镓聚焦离子束和热退火,我们展示了宽带隙半导体ZnO的可变掺杂,实现了从10¹⁷ cm⁻³到10²⁰ cm⁻³的载流子浓度。在不进行后续热退火的情况下使用相同的聚焦离子束,我们对关联半导体VO进行了缺陷工程,将其绝缘体-金属转变(IMT)温度局部改变高达约25°C。通过聚焦离子束直接写入对金属氧化物进行这种区域选择性改性,为光学结构的制造提供了一条简单的、无需掩膜的途径,特别是在需要多个或连续水平的掺杂或缺陷密度时。