Wray Parker R, Paul Elijah G, Atwater Harry A
Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA.
Nanophotonics. 2024 Jan 17;13(2):183-193. doi: 10.1515/nanoph-2023-0649. eCollection 2024 Jan.
We theoretically investigate the ability to design optical filters from a single material and a single layer of randomly dispersed resonant dielectric particles, defining a random metasurface. Using a Bayesian and generalized Mie inverse-design approach, we design particle radii distributions that give rise to longpass, shortpass, bandpass, and bandstop spectral bands in the infrared. The optical response is shown to be directly related to electric and magnetic multipole scattering of the constituent particles and their near field coupling. We discuss the effect of the particle size distribution and particle-particle coupling interactions on filter design in random systems lacking long-range order.
我们从理论上研究了利用单一材料和单层随机分散的谐振介电粒子设计光学滤波器的能力,由此定义了一种随机超表面。通过贝叶斯和广义米氏逆设计方法,我们设计了能在红外波段产生长波通、短波通、带通和带阻光谱带的粒子半径分布。结果表明,光学响应与组成粒子的电和磁多极散射及其近场耦合直接相关。我们讨论了在缺乏长程有序的随机系统中,粒径分布和粒子间耦合相互作用对滤波器设计的影响。