Brown Vanessa M, Lee Jacob, Wang John, Casas Brooks, Chiu Pearl H
Fralin Biomedical Research Institute at VTC, Virginia Tech.
Department of Psychology, Virginia Tech.
Clin Psychol Sci. 2024 Nov;12(6):1146-1161. doi: 10.1177/21677026231213368. Epub 2024 Jan 24.
Algorithmically defined aspects of reinforcement learning correlate with psychopathology symptoms and change with symptom improvement following cognitive-behavioral therapy (CBT). Separate work in nonclinical samples has shown that varying the structure and statistics of task environments can change learning. Here, we combine these literatures, drawing on CBT-based guided restructuring of thought processes and computationally defined mechanistic targets identified by reinforcement-learning models in depression, to test whether and how verbal queries affect learning processes. Using a parallel-arm design, we tested 1,299 online participants completing a probabilistic reward-learning task while receiving repeated queries about the task environment (11 learning-query arms and one active control arm). Querying participants about reinforcement-learning-related task components altered computational-model-defined learning parameters in directions specific to the target of the query. These effects on learning parameters were consistent across depression-symptom severity, suggesting new learning-based strategies and therapeutic targets for evoking symptom change in mood psychopathology.
强化学习中由算法定义的方面与精神病理学症状相关,并且在认知行为疗法(CBT)后会随着症状改善而变化。在非临床样本中的单独研究表明,改变任务环境的结构和统计数据可以改变学习。在这里,我们结合这些文献,借鉴基于CBT的思维过程引导性重构以及强化学习模型在抑郁症中确定的计算定义的机制目标,来测试言语询问是否以及如何影响学习过程。采用平行组设计,我们测试了1299名在线参与者,他们在完成概率奖励学习任务的同时,会收到关于任务环境的重复询问(11个学习询问组和1个主动对照组)。向参与者询问与强化学习相关的任务组成部分,会以特定于询问目标的方向改变计算模型定义的学习参数。这些对学习参数的影响在抑郁症状严重程度上是一致的,这表明了基于学习的新策略和治疗靶点,可用于引发情绪精神病理学中的症状变化。