Liu Guang-Xin, Liu Jing-Feng, Zhou Wen-Jie, Li Ling-Yan, You Chun-Lian, Qiu Cheng-Wei, Wu Lin
College of Electronic Engineering and College of Artificial Intelligence, South China Agricultural University, Guangzhou 510642, China.
Science, Mathematics and Technology (SMT), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore.
Nanophotonics. 2023 Apr 13;12(11):1943-1955. doi: 10.1515/nanoph-2022-0746. eCollection 2023 May.
Recent advances in inverse-design approaches for discovering optical structures based on desired functional characteristics have reshaped the landscape of nanophotonic structures, where most studies have focused on how light interacts with nanophotonic structures only. When quantum emitters (QEs), such as atoms, molecules, and quantum dots, are introduced to couple to the nanophotonic structures, the light-matter interactions become much more complicated, forming a rapidly developing field - quantum nanophotonics. Typical quantum functional characteristics depend on the intrinsic properties of the QE and its electromagnetic environment created by the nanophotonic structures, commonly represented by a scalar quantity, local-density-of-states (LDOS). In this work, we introduce a generalized inverse-design framework in quantum nanophotonics by taking LDOS as the bridge to connect the nanophotonic structures and the quantum functional characteristics. We take a simple system consisting of QEs sitting on a single multilayer shell-metal-nanoparticle (SMNP) as an example, apply fully-connected neural networks to model the LDOS of SMNP, inversely design and optimize the geometry of the SMNP based on LDOS, and realize desirable quantum characteristics in two quantum nanophotonic problems: spontaneous emission and entanglement. Our work introduces deep learning to the quantum optics domain for advancing quantum device designs; and provides a new platform for practicing deep learning to design nanophotonic structures for complex problems without a direct link between structures and functional characteristics.
基于所需功能特性发现光学结构的逆设计方法的最新进展重塑了纳米光子结构领域的格局,在该领域中,大多数研究仅关注光如何与纳米光子结构相互作用。当引入诸如原子、分子和量子点等量子发射器(QE)与纳米光子结构耦合时,光与物质的相互作用变得更加复杂,从而形成了一个快速发展的领域——量子纳米光子学。典型的量子功能特性取决于量子发射器的固有属性及其由纳米光子结构创建的电磁环境,通常由一个标量——局域态密度(LDOS)来表示。在这项工作中,我们通过将局域态密度作为连接纳米光子结构和量子功能特性的桥梁,在量子纳米光子学中引入了一个广义的逆设计框架。我们以一个由位于单个多层壳层金属纳米粒子(SMNP)上的量子发射器组成的简单系统为例,应用全连接神经网络来模拟SMNP的局域态密度,基于局域态密度对SMNP的几何形状进行逆设计和优化,并在两个量子纳米光子学问题——自发发射和纠缠中实现所需的量子特性。我们的工作将深度学习引入量子光学领域以推进量子器件设计;并为实践深度学习提供了一个新平台,用于设计针对结构与功能特性之间没有直接联系的复杂问题的纳米光子结构。