Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Sci Rep. 2019 Nov 5;9(1):16071. doi: 10.1038/s41598-019-52418-9.
In biology, sensing is a major driver of discovery. A principal challenge is to create a palette of probes that offer near single-molecule sensitivity and simultaneously enable multiplexed sensing and imaging in the "tissue-transparent" near-infrared region. Surface-enhanced Raman scattering and metal-enhanced fluorescence have shown substantial promise in addressing this need. Here, we theorize a rational design and optimization strategy to generate nanostructured probes that combine distinct plasmonic materials sandwiching a dielectric layer in a multilayer core shell configuration. The lower energy resonance peak in this multi-resonant construct is found to be highly tunable from visible to the near-IR region. Such a configuration also allows substantially higher near-field enhancement, compared to a classical core-shell nanoparticle that possesses a single metallic shell, by exploiting the differential coupling between the two core-shell interfaces. Combining such structures in a dimer configuration, which remains largely unexplored at this time, offers significant opportunities not only for near-field enhancement but also for multiplexed sensing via the (otherwise unavailable) higher order resonance modes. Together, these theoretical calculations open the door for employing such hybrid multi-layered structures, which combine facile spectral tunability with ultrahigh sensitivity, for biomolecular sensing.
在生物学中,感应是发现的主要驱动力。主要挑战是创建一组探针,这些探针提供接近单分子的灵敏度,并同时在“组织透明”的近红外区域实现多路复用感应和成像。表面增强拉曼散射和金属增强荧光已经在满足这一需求方面显示出了巨大的潜力。在这里,我们提出了一种合理的设计和优化策略,以生成纳米结构探针,这些探针将不同的等离子体材料夹在多层核壳结构中的介电层中。在这种多共振结构中,发现较低能量的共振峰高度可调,从可见光到近红外区域。与具有单个金属壳的经典核壳纳米粒子相比,这种配置还通过利用两个核壳界面之间的差分耦合,允许实质上更高的近场增强。在此时基本上尚未探索的二聚体配置中组合这些结构,不仅为近场增强提供了巨大的机会,而且还为通过(否则不可用的)更高阶共振模式进行多路复用感应提供了巨大的机会。这些理论计算为采用这种混合多层结构打开了大门,这种结构将超灵敏的光谱可调性与超高灵敏度相结合,用于生物分子感应。