Kim Taeyeon, Ahn Heesang, Kim Soojung, Song Hyerin, Choi Jong-Ryul, Kim Kyujung
Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea.
Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea.
Nanophotonics. 2023 Apr 25;12(11):2041-2050. doi: 10.1515/nanoph-2023-0145. eCollection 2023 May.
Plasmonic optical nanolithography using extraordinary optical transmission through a metallic nanohole mask has been actively applied to the high-resolution fabrication of nanostructures over a large area. Although there have been studies on improving the nanostructure fabrication performance in optical nanolithography, such as on adjustable external gap spacing, additional performance enhancement is required for practical applications and commercialization of large-area and high-resolution nanostructure array fabrication techniques. In this study, we design and apply a plasmonic bull's eye nanostructured meta-mask to enhance the performance of optical nanolithography. Through simulation results and experimental verification, it is confirmed that advanced optical nanolithography using the bull's eye nanostructured meta-mask has several merits compared to conventional Talbot lithography using nanoholes: (1) Optical nanolithography using the bull's eye nanostructured meta-mask effectively fabricates nanopillar arrays even at a shorter exposure time than conventional optical lithography using nanoholes. (2) It is possible to create a large-area nanopillar array with various nanopillar diameters by exposure time control in optical nanolithography using the bull's eye meta-mask. (3) Using water or objective immersion oil to increase the refractive index of the contact medium, light can be focused on smaller sizes, and large-area nanopillar arrays with smaller nanopillar diameters are established. With the upgradation of hardware for large-area fabrication, application of immersion media supplying techniques, and additional studies to establish complex nanostructures, optical nanolithography using the bull's eye nanostructured meta-mask is an efficient modality to produce various nanostructure-based devices.
利用通过金属纳米孔掩模的超常光学传输的等离激元光学纳米光刻技术已被积极应用于大面积纳米结构的高分辨率制造。尽管已经有关于提高光学纳米光刻中纳米结构制造性能的研究,例如可调节的外部间隙间距,但对于大面积和高分辨率纳米结构阵列制造技术的实际应用和商业化而言,仍需要进一步提高性能。在本研究中,我们设计并应用了一种等离激元靶心纳米结构的超表面掩模来提高光学纳米光刻的性能。通过模拟结果和实验验证,证实了与使用纳米孔的传统塔尔博特光刻相比,使用靶心纳米结构超表面掩模的先进光学纳米光刻具有几个优点:(1)使用靶心纳米结构超表面掩模的光学纳米光刻即使在比使用纳米孔的传统光学光刻更短的曝光时间下也能有效地制造纳米柱阵列。(2)在使用靶心超表面掩模的光学纳米光刻中,通过控制曝光时间可以创建具有各种纳米柱直径的大面积纳米柱阵列。(3)使用水或物镜浸没油来增加接触介质的折射率,可以将光聚焦到更小的尺寸,并建立具有更小纳米柱直径的大面积纳米柱阵列。随着用于大面积制造的硬件升级、浸没介质供应技术的应用以及建立复杂纳米结构的进一步研究,使用靶心纳米结构超表面掩模的光学纳米光刻是生产各种基于纳米结构的器件的有效方式。