Suppr超能文献

磁共振成像(MRI)的组织匹配分析评估肝细胞癌中的肿瘤浸润淋巴细胞

Tissue-matched analysis of MRI evaluating the tumor infiltrating lymphocytes in hepatocellular carcinoma.

作者信息

Huang Mengqi, Song Chenyu, Zhou Xiaoqi, Wang Huanjun, Lin Yingyu, Wang Jifei, Cai Huasong, Wang Meng, Peng Zhenpeng, Dong Zhi, Feng Shi-Ting

机构信息

Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

出版信息

Int J Cancer. 2025 Apr 15;156(8):1634-1643. doi: 10.1002/ijc.35281. Epub 2024 Dec 5.

Abstract

Tumor-infiltrating lymphocytes (TILs) play critical roles in the tumor microenvironment and immunotherapy response. This study aims to explore the feasibility of multi-parametric magnetic resonance imaging (MRI) in evaluating TILs and to develop an evaluation model that considers spatial heterogeneity. Multi-parametric MRI was performed on hepatocellular carcinoma (HCC) mice (N = 28). Three-dimensional (3D) printing was employed for tissue sampling, to match the multi-parametric MRI data with tumor tissues, followed by flow cytometry analysis and next-generation RNA-sequencing. Pearson's correlation, multivariate logistic regression, and receiver operating characteristic (ROC) curve analyses were utilized to model TIL-related MRI parameters. MRI quantitative parameters, including T1 relaxation times and perfusion, were correlated with the infiltration of leukocytes, T-cells, CD4+ T-cells, CD8+ T-cells, PD1 + CD8+ T-cells, B-cells, macrophages, and regulatory T-cells (correlation coefficients ranged from -0.656 to 0.482, p <.05) in tumor tissues. TILs were clustered into inflamed and non-inflamed subclasses, with the proportion of T-cells, CD8+ T-cells, and PD1 + CD8+ T-cells significantly higher in the inflamed group compared to the non-inflamed group (43.37% vs. 25.45%, 50.83% vs. 34.90%, 40.45% vs. 29.47%, respectively; p <.001). The TIL evaluation model, based on the Z-score combining Kep and T1post, was able to distinguish between these subgroups, yielding an area under the curve of 0.816 (95% confidence interval 0.721-0.910) and a cut-off value of -0.03 (sensitivity 68.4%, specificity 91.3%). Additionally, the Z-score was related to the gene expression of T-cell activation, chemokine production, and cell adhesion. The tissue-matched analysis of multi-parametric MRI offers a feasible method of regional evaluation and can distinguish between TIL subclasses.

摘要

肿瘤浸润淋巴细胞(TILs)在肿瘤微环境和免疫治疗反应中发挥着关键作用。本研究旨在探讨多参数磁共振成像(MRI)评估TILs的可行性,并建立一个考虑空间异质性的评估模型。对肝细胞癌(HCC)小鼠(N = 28)进行了多参数MRI检查。采用三维(3D)打印进行组织采样,以使多参数MRI数据与肿瘤组织匹配,随后进行流式细胞术分析和下一代RNA测序。利用Pearson相关性分析、多元逻辑回归分析和受试者操作特征(ROC)曲线分析来建立与TIL相关的MRI参数模型。MRI定量参数,包括T1弛豫时间和灌注,与肿瘤组织中白细胞、T细胞、CD4 + T细胞、CD8 + T细胞、PD1 + CD8 + T细胞、B细胞、巨噬细胞和调节性T细胞的浸润相关(相关系数范围为-0.656至0.482,p <.05)。TILs被聚类为炎症和非炎症亚类,炎症组中T细胞、CD8 + T细胞和PD1 + CD8 + T细胞的比例显著高于非炎症组(分别为43.37%对25.45%、50.83%对34.90%、40.45%对29.47%;p <.001)。基于结合Kep和T1post的Z评分的TIL评估模型能够区分这些亚组,曲线下面积为0.816(95%置信区间0.721 - 0.910),截断值为-0.03(敏感性68.4%,特异性91.3%)。此外,Z评分与T细胞活化、趋化因子产生和细胞黏附的基因表达相关。多参数MRI的组织匹配分析提供了一种可行的区域评估方法,并且能够区分TIL亚类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e723/11826122/a4101dbf88f2/IJC-156-1634-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验