Yea Junwoo, Ha Jeongdae, Lim Kyung Seob, Lee Hyeokjun, Oh Saehyuck, Jekal Janghwan, Yu Tae Sang, Jung Han Hee, Park Jang-Ung, Lee Taeyoon, Jeong Jae-Woong, Kim Hoe Joon, Keum Hohyun, Lee Yoon Kyeung, Jang Kyung-In
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea.
ACS Nano. 2024 Dec 17;18(50):34096-34106. doi: 10.1021/acsnano.4c09933. Epub 2024 Dec 5.
Structures such as 3D buckling have been widely used to impart stretchability to devices. However, these structures have limitations when applied to piezoelectric devices due to the uneven distribution of internal strain during deformation. When strains with opposite directions simultaneously affect piezoelectric materials, the electric output can decrease due to cancellation. Here, we report an electrode design tailored to the direction of strain and a circuit configuration that prevents electric output cancellation. These designs not only provide stretchability to piezoelectric nanogenerators (PENGs) but also effectively minimize electric output loss, achieving stretchable PENGs with minimal energy loss. These improvements were demonstrated using an inorganic piezoelectric material (PZT thin film) with a high piezoelectric coefficient, achieving a substantial maximum output power of 8.34 mW/cm. Theoretical modeling of the coupling between mechanical and electrical properties demonstrates the dynamics of energy harvesting, emphasizing the electrode design. In vitro and in vivo experiments validate the device's effectiveness in biomechanical energy harvesting. These results represent a significant advancement in stretchable PENGs, offering robust and efficient solutions for wearable electronics and biomedical devices.
诸如三维屈曲等结构已被广泛用于赋予器件可拉伸性。然而,由于变形过程中内部应变分布不均,这些结构应用于压电器件时存在局限性。当相反方向的应变同时作用于压电材料时,电输出可能会因抵消而降低。在此,我们报告了一种根据应变方向定制的电极设计以及一种防止电输出抵消的电路配置。这些设计不仅为压电纳米发电机(PENG)提供了可拉伸性,还有效减少了电输出损失,实现了能量损失最小的可拉伸PENG。使用具有高压电系数的无机压电材料(PZT薄膜)证明了这些改进,实现了高达8.34 mW/cm的显著最大输出功率。机械性能与电性能之间耦合的理论建模展示了能量收集的动力学过程,突出了电极设计的重要性。体外和体内实验验证了该器件在生物机械能收集方面的有效性。这些结果代表了可拉伸PENG的重大进展,为可穿戴电子设备和生物医学器件提供了强大而高效的解决方案。