Matsuzaki Takahisa, Fujii Mai, Noro Hayata, Togo Shodai, Watanabe Mami, Suganuma Masami, Sharma Shivani, Kobayashi Naritaka, Kawamura Ryuzo, Nakabayashi Seiichiro, Yoshikawa Hiroshi Y
Department of Applied Physics, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan.
Division of Precision Engineering and Applied Physics, Center for Future Innovation, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
Proc Natl Acad Sci U S A. 2024 Dec 10;121(50):e2412914121. doi: 10.1073/pnas.2412914121. Epub 2024 Dec 5.
We developed an advanced optical microscope for the simultaneous visualization of membrane fluidity and morphology to define cell adhesion signatures. This microscope combines ratiometric spectral imaging of membrane fluidity and interferometric imaging of membrane morphology. As a preliminary demonstration, we simultaneously visualized the interface between a giant unilamellar vesicle (GUV) and a glass substrate at different temperatures. We identified more fluid regions of the membrane and membrane adhesion sites (conversely, low-fluidic, ordered membrane domains correlate with nonadhered regions). This microscopic system was applied to human breast cancer cell lines with different malignancies; then, we identified adhesion signature of cancer cells: 1) low-fluidic, ordered membrane domains at the cell periphery and 2) large fluidic deviation at the nonadhered region. Inhibition of the cholesterol synthesis pathway suppresses the ordered membrane domains at the cancer cell periphery; thus, high level of cholesterol supports the appearance. Furthermore, an inhibitor of the unsaturated lipid synthesis pathway suppressed the large fluidic deviation at the nonadhered region; variation of unsaturated lipids contributes to heterogeneity of the cancer membrane. Therefore, our advanced optical microscopy enables us to couple membrane physical properties with cell adhesion, leading to definition of adhesion signatures of broad cell types, not just for cancer cells, that regulate life phenomena.
我们开发了一种先进的光学显微镜,用于同时观察膜流动性和形态,以定义细胞粘附特征。该显微镜结合了膜流动性的比率光谱成像和膜形态的干涉成像。作为初步演示,我们在不同温度下同时观察了巨型单层囊泡(GUV)与玻璃基板之间的界面。我们确定了膜的更多流体区域和膜粘附位点(相反,低流体、有序的膜域与非粘附区域相关)。该显微系统应用于具有不同恶性程度的人乳腺癌细胞系;然后,我们确定了癌细胞的粘附特征:1)细胞周边的低流体、有序膜域和2)非粘附区域的大流体偏差。胆固醇合成途径的抑制会抑制癌细胞周边的有序膜域;因此,高水平的胆固醇支持其出现。此外,不饱和脂质合成途径的抑制剂抑制了非粘附区域的大流体偏差;不饱和脂质的变化导致癌膜的异质性。因此,我们的先进光学显微镜使我们能够将膜的物理性质与细胞粘附联系起来,从而定义广泛细胞类型(不仅是癌细胞)的粘附特征,这些细胞类型调节生命现象。