Jiang Shu, Bennett Debbie L, Rosner Bernard A, Tamimi Rulla M, Colditz Graham A
Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine in St Louis, St Louis, MO.
Department of Radiology, Washington University School of Medicine in St Louis, St Louis, MO.
JCO Clin Cancer Inform. 2024 Dec;8:e2400200. doi: 10.1200/CCI-24-00200. Epub 2024 Dec 5.
Current image-based long-term risk prediction models do not fully use previous screening mammogram images. Dynamic prediction models have not been investigated for use in routine care.
We analyzed a prospective WashU clinic-based cohort of 10,099 cancer-free women at entry (between November 3, 2008 and February 2012). Follow-up through 2020 identified 478 pathology-confirmed breast cancers (BCs). The cohort included 27% Black women. An external validation cohort (Emory) included 18,360 women screened from 2013, followed through 2020. This included 42% Black women and 332 pathology-confirmed BC excluding those diagnosed within 6 months of screening. We trained a dynamic model using repeated screening mammograms at WashU to predict 5-year risk. This opportunistic screening service presented a range of mammogram images for each woman. We applied the model to the external validation data to evaluate discrimination performance (AUC) and calibrated to US SEER.
Using 3 years of previous mammogram images available at the current screening visit, we obtained a 5-year AUC of 0.80 (95% CI, 0.78 to 0.83) in the external validation. This represents a significant improvement over the current visit mammogram AUC 0.74 (95% CI, 0.71 to 0.77; < .01) in the same women. When calibrated, a risk ratio of 21.1 was observed comparing high (>4%) to very low (<0.3%) 5-year risk. The dynamic model classified 16% of the cohort as high risk among whom 61% of all BCs were diagnosed. The dynamic model performed comparably in Black and White women.
Adding previous screening mammogram images improves 5-year BC risk prediction beyond static models. It can identify women at high risk who might benefit from supplemental screening or risk-reduction strategies.
当前基于图像的长期风险预测模型未充分利用既往的乳腺筛查钼靶图像。动态预测模型尚未在常规医疗中进行研究。
我们分析了一个前瞻性队列,该队列来自华盛顿大学诊所,共有10,099名初诊时无癌症的女性(2008年11月3日至2012年2月期间)。随访至2020年,共识别出478例经病理确诊的乳腺癌(BC)。该队列中27%为黑人女性。一个外部验证队列(埃默里大学)包括2013年开始筛查的18,360名女性,随访至2020年。其中42%为黑人女性,332例经病理确诊的BC(排除筛查后6个月内确诊的病例)。我们使用华盛顿大学的重复筛查钼靶图像训练了一个动态模型,以预测5年风险。这种机会性筛查服务为每位女性提供了一系列钼靶图像。我们将该模型应用于外部验证数据,以评估区分性能(AUC)并根据美国监测、流行病学和最终结果(SEER)数据进行校准。
利用当前筛查就诊时可获取的3年既往钼靶图像,我们在外部验证中获得了5年AUC为0.80(95%CI,0.78至0.83)。这相较于同一批女性当前就诊钼靶图像的AUC 0.74(95%CI,0.71至0.77;P<.01)有显著改善。校准后,5年高风险(>4%)与极低风险(<0.3%)的风险比为21.1。动态模型将16%的队列分类为高风险,其中61%的BC被诊断出来。动态模型在黑人和白人女性中的表现相当。
添加既往筛查钼靶图像可改善5年BC风险预测,优于静态模型。它可以识别出可能从补充筛查或风险降低策略中获益的高风险女性。