Suppr超能文献

基于深度学习的体育教育中生成对抗网络分析

The analysis of generative adversarial network in sports education based on deep learning.

作者信息

Eerdenisuyila Eerdenisuyila, Li Hongming, Chen Wei

机构信息

Allied Health &Human Performance, University of South Australia, Adelaide, South Australia, 5000, Australia.

College of Education, University of Florida, Gainesville, 32601, USA.

出版信息

Sci Rep. 2024 Dec 5;14(1):30318. doi: 10.1038/s41598-024-81107-5.

Abstract

The importance of mental health is increasingly emphasized in modern society. The assessment of mental health qualities among college and university students as the future workforce holds significant significance. Therefore, this study, aiming to streamline the process of writing quality evaluations and enhance the fairness of assessment comments, explores the use of Generative Adversarial Network (GAN) technology in deep learning to evaluate the mental health qualities of college and university students through the unique avenue of sports. Firstly, GAN and Sequence Generative Adversarial Network (SeqGAN) models are introduced. Secondly, GAN is employed to construct a model for generating evaluation texts, encompassing the construction of a generator and discriminator, along with the introduction of a reward function. Finally, the constructed model is utilized to train on evaluation texts related to the mental health qualities of college and university students engaged in sports, validating the effectiveness of the model. The results indicate: (1) The pre-training of the generator in the constructed text generation model stabilizes after the 10th epoch. In contrast, the pre-training of the discriminator gradually stabilizes after the 35th epoch, demonstrating overall good training effectiveness. (2) When the generator's update speed surpasses that of the discriminator, the model's loss does not converge. However, with a reduction in the ratio of rounds between the two, there is a noticeable improvement in the convergence of the model. (3) The mean score of adaptability quality is the highest among the four indicators, suggesting a strong correlation between comment generation and adaptability quality. The results validate the effectiveness of the proposed text generation model in semantic control. This study aims to advance the level of mental health education among college and university students in the sports domain, providing theoretical references for enhancing the effectiveness of quality education assessments in other subjects as well.

摘要

心理健康的重要性在现代社会中日益受到强调。对作为未来劳动力的大学生心理健康素质进行评估具有重要意义。因此,本研究旨在简化质量评估的撰写过程并提高评估意见的公正性,探索在深度学习中使用生成对抗网络(GAN)技术,通过体育这一独特途径来评估大学生的心理健康素质。首先,介绍了GAN和序列生成对抗网络(SeqGAN)模型。其次,利用GAN构建一个生成评估文本的模型,包括生成器和判别器的构建以及奖励函数的引入。最后,利用构建的模型对与参与体育活动的大学生心理健康素质相关的评估文本进行训练,验证模型的有效性。结果表明:(1)在所构建的文本生成模型中,生成器的预训练在第10个轮次后趋于稳定。相比之下,判别器的预训练在第35个轮次后逐渐稳定,整体训练效果良好。(2)当生成器的更新速度超过判别器时,模型的损失不收敛。然而,随着两者轮次比例的降低,模型的收敛性有明显改善。(3)适应性素质的平均得分在四个指标中最高,表明评论生成与适应性素质之间有很强的相关性。结果验证了所提出的文本生成模型在语义控制方面的有效性。本研究旨在提高体育领域大学生心理健康教育水平,也为提高其他学科素质教育评估的有效性提供理论参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a96/11621344/e36c737ec7fc/41598_2024_81107_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验