Pan Jiating, Liang Lishi, Liang Yongbo, Tang Qunfeng, Chen Zhencheng, Zhu Jianming
School of life & Environmental Science, Guilin University of Electronic Technology, Guilin, 541004, China.
School of Egineering and Automation, Guilin University of Electronic Technology, 541004, Guilin, China.
Sci Rep. 2024 Dec 5;14(1):30333. doi: 10.1038/s41598-024-82026-1.
Blood pressure is a crucial indicator of cardiovascular disease, and arterial blood pressure (ABP) waveforms contain information that reflects the cardiovascular status. We propose a novel deep-learning method that converts photoplethysmogram (PPG) signals into ABP waveforms. We used [Formula: see text]-Net as a feature extractor and designed a Bi-block to capture individualised time information in encoder feature extraction. We further enhanced the prediction accuracy of the ABP waveforms by applying a combined loss function to each layer of deep supervision. We also propose a total error index (TEI) to measure overall performance. Furthermore, we extended our method from the UCI dataset to the VitalDB dataset, achieving mean absolute error ± standard deviation (MAE ± STD) values of 2.48 ± 1.95, 1.42 ± 1.42, and 1.48 ± 1.36 mmHg for systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) in UCI dataset, and 2.16 ± 1.53, 1.12 ± 0.59, and 1.35 ± 0.84 mmHg in VitalDB dataset, respectively. The mean ± STD values of the TEI index are 0.29 ± 0.10 in UCI dataset and 0.29 ± 0.15 in VitalDB dataset. These results demonstrate the superiority of the proposed method over existing methods and its robustness to different sampling frequencies and devices.
血压是心血管疾病的关键指标,动脉血压(ABP)波形包含反映心血管状态的信息。我们提出了一种将光电容积脉搏波描记图(PPG)信号转换为ABP波形的新型深度学习方法。我们使用[公式:见正文]-Net作为特征提取器,并设计了一个双块在编码器特征提取中捕获个性化时间信息。我们通过对深度监督的每一层应用组合损失函数进一步提高了ABP波形的预测准确性。我们还提出了一个总误差指数(TEI)来衡量整体性能。此外,我们将我们的方法从UCI数据集扩展到VitalDB数据集,在UCI数据集中,收缩压(SBP)、舒张压(DBP)和平均动脉压(MAP)的平均绝对误差±标准差(MAE±STD)值分别为2.48±1.95、1.42±1.42和1.48±1.36 mmHg,在VitalDB数据集中分别为2.16±1.53、1.12±0.59和1.35±0.84 mmHg。TEI指数的平均±STD值在UCI数据集中为0.29±0.10,在VitalDB数据集中为0.29±0.15。这些结果证明了所提出的方法优于现有方法及其对不同采样频率和设备的鲁棒性。