Ma Haibin, Zhou Jun, Zhao Yang, Wang Shijie, Hu Zhiwei, Ma Jiwei, Cheng Hongfei
Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China.
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore.
Small. 2024 Dec 5:e2406353. doi: 10.1002/smll.202406353.
The high overpotential and unsatisfactory stability of RuO-based catalysts seriously hinder their application in acidic oxygen evolution reaction (OER). Herein, a Ru@RuO core/shell catalyst doped with atomically dispersed Mn species, denoted as Ru@Mn-RuO, is reported, which is prepared by a facile one-pot method. Detailed structural characterizations confirm that Mn is homogeneously and atomically distributed in RuO shell, which causes lattice contraction of RuO. The as-prepared Ru@Mn-RuO exhibits a very low overpotential of 190 mV at the current density of 10 mA cm and an excellent stability of 360 h, far surpassing the control samples Ru@RuO without atomically dispersed Mn dopants and home-made RuO nanoparticles without metallic Ru core. With the further assistance of density functional theory calculations, the enhanced OER activity of Ru@Mn-RuO is attributed to multiple synergistic effects, including the MnO-Ru (oxide shell) synergy, MnO-Ru (metal core) synergy, and the Ru (core)-RuO (shell) synergy. Besides, the atomically dispersed Mn doping can increase the formation energy of soluble Ru cations, thus leading to the excellent stability of the Ru@Mn-RuO catalyst. This work shines light on the design of electrocatalysts with multiple synergistic effects towards efficient acid water splitting.
基于RuO的催化剂具有高过电位和不理想的稳定性,严重阻碍了它们在酸性析氧反应(OER)中的应用。在此,报道了一种掺杂原子分散的Mn物种的Ru@RuO核/壳催化剂,记为Ru@Mn-RuO,它是通过简便的一锅法制备的。详细的结构表征证实,Mn均匀且原子级地分布在RuO壳层中,这导致RuO的晶格收缩。所制备的Ru@Mn-RuO在电流密度为10 mA cm时表现出非常低的190 mV过电位和360 h的优异稳定性,远远超过没有原子分散Mn掺杂剂的对照样品Ru@RuO以及没有金属Ru核的自制RuO纳米颗粒。在密度泛函理论计算的进一步辅助下,Ru@Mn-RuO增强的OER活性归因于多种协同效应,包括MnO-Ru(氧化物壳)协同效应、MnO-Ru(金属核)协同效应以及Ru(核)-RuO(壳)协同效应。此外,原子分散的Mn掺杂可以增加可溶性Ru阳离子的形成能,从而导致Ru@Mn-RuO催化剂具有优异的稳定性。这项工作为设计具有多种协同效应以实现高效酸性水分解的电催化剂提供了思路。