Suppr超能文献

深度应变:一种用于心脏力学自动特征化的深度学习工作流程。

DeepStrain: A Deep Learning Workflow for the Automated Characterization of Cardiac Mechanics.

作者信息

Morales Manuel A, van den Boomen Maaike, Nguyen Christopher, Kalpathy-Cramer Jayashree, Rosen Bruce R, Stultz Collin M, Izquierdo-Garcia David, Catana Ciprian

机构信息

Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.

Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States.

出版信息

Front Cardiovasc Med. 2021 Sep 3;8:730316. doi: 10.3389/fcvm.2021.730316. eCollection 2021.

Abstract

Myocardial strain analysis from cinematic magnetic resonance imaging (cine-MRI) data provides a more thorough characterization of cardiac mechanics than volumetric parameters such as left-ventricular ejection fraction, but sources of variation including segmentation and motion estimation have limited its wider clinical use. We designed and validated a fast, fully-automatic deep learning (DL) workflow to generate both volumetric parameters and strain measures from cine-MRI data consisting of segmentation and motion estimation convolutional neural networks. The final motion network design, loss function, and associated hyperparameters are the result of a thorough implementation that we carefully planned specific for strain quantification, tested, and compared to other potential alternatives. The optimal configuration was trained using healthy and cardiovascular disease (CVD) subjects ( = 150). DL-based volumetric parameters were correlated (>0.98) and without significant bias relative to parameters derived from manual segmentations in 50 healthy and CVD test subjects. Compared to landmarks manually-tracked on tagging-MRI images from 15 healthy subjects, landmark deformation using DL-based motion estimates from paired cine-MRI data resulted in an end-point-error of 2.9 ± 1.5 mm. Measures of end-systolic global strain from these cine-MRI data showed no significant biases relative to a tagging-MRI reference method. On 10 healthy subjects, intraclass correlation coefficient for intra-scanner repeatability was good to excellent (>0.75) for all global measures and most polar map segments. In conclusion, we developed and evaluated the first end-to-end learning-based workflow for automated strain analysis from cine-MRI data to quantitatively characterize cardiac mechanics of healthy and CVD subjects.

摘要

来自电影磁共振成像(cine-MRI)数据的心肌应变分析比诸如左心室射血分数等容积参数能更全面地描述心脏力学,但包括分割和运动估计在内的变异来源限制了其在临床上的更广泛应用。我们设计并验证了一种快速、全自动的深度学习(DL)工作流程,可从由分割和运动估计卷积神经网络组成的cine-MRI数据中生成容积参数和应变测量值。最终的运动网络设计、损失函数和相关超参数是我们针对应变量化精心规划、测试并与其他潜在替代方案进行比较的全面实施的结果。使用健康和心血管疾病(CVD)受试者(n = 150)对最佳配置进行了训练。在50名健康和CVD测试受试者中,基于DL的容积参数与手动分割得出的参数具有相关性(>0.98)且无显著偏差。与15名健康受试者标记MRI图像上手动跟踪的地标相比,使用基于DL的配对cine-MRI数据运动估计得出的地标变形导致终点误差为2.9±1.5毫米。这些cine-MRI数据的收缩末期整体应变测量值与标记MRI参考方法相比无显著偏差。在10名健康受试者中,所有整体测量值和大多数极坐标图段的扫描仪内重复性组内相关系数良好至优秀(>0.75)。总之,我们开发并评估了首个基于端到端学习的工作流程,用于从cine-MRI数据进行自动应变分析,以定量表征健康和CVD受试者的心脏力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f32c/8446607/919ed0c85456/fcvm-08-730316-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验