Suppr超能文献

整合磁共振影像组学和病理组学的鼻咽癌新辅助化疗疗效预测模型的建立:一项多中心回顾性研究

Development of a neoadjuvant chemotherapy efficacy prediction model for nasopharyngeal carcinoma integrating magnetic resonance radiomics and pathomics: a multi-center retrospective study.

作者信息

Wang Yiren, Zhang Huaiwen, Wang Huan, Hu Yiheng, Wen Zhongjian, Deng Hairui, Huang Delong, Xiang Li, Zheng Yun, Yang Lu, Su Lei, Li Yunfei, Liu Fang, Wang Peng, Guo Shengmin, Pang Haowen, Zhou Ping

机构信息

School of Nursing, Southwest Medical University, Luzhou, 646000, China.

Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, School of Nursing, Southwest Medical University, Luzhou, 646000, China.

出版信息

BMC Cancer. 2024 Dec 5;24(1):1501. doi: 10.1186/s12885-024-13235-0.

Abstract

OBJECTIVE

This study aimed to develop and validate a predictive model for assessing the efficacy of neoadjuvant chemotherapy (NACT) in nasopharyngeal carcinoma (NPC) by integrating radiomics and pathomics features using a particle swarm optimization-supported support vector machine (PSO-SVM).

METHODS

A retrospective multi-center study was conducted, which included 389 NPC patients who received NACT from three institutions. Radiomics features were extracted from magnetic resonance imaging scans, while pathomics features were derived from histopathological images. A total of 2,667 radiomics features and 254 pathomics features were initially extracted. Feature selection involved intra-class correlation coefficient evaluation, Mann-Whitney U test, Spearman correlation analysis, and least absolute shrinkage and selection operator regression. The PSO-SVM model was constructed and validated using 10-fold cross-validation on the training set and further evaluated using an external validation set. Model performance was assessed using the area under the curve (AUC) of the receiver operating characteristic curve, calibration curves, and decision curve analysis.

RESULTS

Eight significant predictive features (five radiomics and three pathomics) were identified. The PSO-SVM radiopathomics model achieved superior performance compared to models based solely on radiomics or pathomics features. The AUCs for the PSO-SVM radiopathomics model were 0.917 (95% CI: 0.887-0.948) in internal validation and 0.814 (95% CI: 0.742-0.887) in external validation. Calibration curves demonstrated good agreement between predicted probabilities and actual outcomes. Decision curve analysis showed that the PSO-SVM radiopathomics model provided higher clinical net benefit over a wider range of risk thresholds compared to other models.

CONCLUSION

The PSO-SVM radiopathomics model effectively integrates radiomics and pathomics features, offering enhanced predictive accuracy and clinical utility for assessing NACT efficacy in NPC. The multi-center approach and robust validation underscore its potential for personalized treatment planning, supporting improved clinical decision-making for NPC patients.

摘要

目的

本研究旨在通过使用粒子群优化支持向量机(PSO-SVM)整合放射组学和病理组学特征,开发并验证一种用于评估鼻咽癌(NPC)新辅助化疗(NACT)疗效的预测模型。

方法

进行了一项回顾性多中心研究,纳入了来自三个机构接受NACT的389例NPC患者。从磁共振成像扫描中提取放射组学特征,而病理组学特征则来自组织病理学图像。最初共提取了2667个放射组学特征和254个病理组学特征。特征选择包括组内相关系数评估、曼-惠特尼U检验、斯皮尔曼相关性分析以及最小绝对收缩和选择算子回归。使用训练集上的10折交叉验证构建并验证PSO-SVM模型,并使用外部验证集进行进一步评估。使用受试者工作特征曲线的曲线下面积(AUC)、校准曲线和决策曲线分析来评估模型性能。

结果

确定了八个显著的预测特征(五个放射组学特征和三个病理组学特征)。与仅基于放射组学或病理组学特征的模型相比,PSO-SVM放射病理组学模型表现出更优的性能。PSO-SVM放射病理组学模型在内部验证中的AUC为0.917(95%CI:0.887-0.948),在外部验证中的AUC为0.814(95%CI:0.742-0.887)。校准曲线显示预测概率与实际结果之间具有良好的一致性。决策曲线分析表明,与其他模型相比,PSO-SVM放射病理组学模型在更广泛的风险阈值范围内提供了更高的临床净效益。

结论

PSO-SVM放射病理组学模型有效地整合了放射组学和病理组学特征,在评估NPC中NACT疗效方面具有更高的预测准确性和临床实用性。多中心方法和稳健的验证突出了其在个性化治疗规划中的潜力,为NPC患者改善临床决策提供支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a93/11619272/0ff422f29d48/12885_2024_13235_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验