Suppr超能文献

计算病理特征的异质性可预测卵巢癌的耐药性和肿瘤内异质性。

Heterogeneity of computational pathomic signature predicts drug resistance and intra-tumor heterogeneity of ovarian cancer.

作者信息

Zhu Qiuli, Dai Hua, Qiu Feng, Lou Weiming, Wang Xin, Deng Libin, Shi Chao

机构信息

Department of Genetics, Gaoxin Branch of The First Affiliated Hospital of Nanchang University, Nanchang, China.

Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China.

出版信息

Transl Oncol. 2024 Feb;40:101855. doi: 10.1016/j.tranon.2023.101855. Epub 2024 Jan 6.

Abstract

BACKGROUND

Chemotherapy resistance is the main cause of ovarian cancer progression and even death. However, there are no clear indicators for predicting the risk of drug resistance in patients. Intra-tumor heterogeneity (ITH) is one of the characteristics of malignant tumors, which is associated with the treatment and prognosis of tumors. Accordingly, our study aims to investigate the correlation between the image features of intra-tumor heterogeneity and drug resistance of ovarian cancer based on artificial intelligence.

METHODS

We obtained hematoxylin and eosin staining frozen histopathological images of ovarian cancer and paracarcinoma tissues from the Cancer Genome Atlas. We extracted quantitative image features of whole-slide images based on the automatic image nuclear segmentation processing technology. After that, we used bioinformatics analysis to find the relationship between image features of intra-tumor heterogeneity and drug resistance.

RESULTS

Our results show that our automatic image processing process based on computer artificial intelligence can extract image features effectively, and the key image features extracted are closely related to ITH. Among them, the Perimeter.sd image feature with the most prominent ITH feature can accurately predict the risk of platinum-based chemotherapy drug resistance in ovarian cancer patients.

CONCLUSION

Automatic image processing and feature extraction based on artificial intelligence have excellent results. Perimeter.sd can be used as a useful image feature indicator for evaluating ITH. ITH is associated with drug resistance of ovarian cancer, so ITH characteristics can be used as an effective indicator to evaluate drug resistance in patients with ovarian cancer.

摘要

背景

化疗耐药是卵巢癌进展甚至死亡的主要原因。然而,目前尚无明确指标可预测患者的耐药风险。肿瘤内异质性(ITH)是恶性肿瘤的特征之一,与肿瘤的治疗及预后相关。因此,我们的研究旨在基于人工智能探究肿瘤内异质性的图像特征与卵巢癌耐药性之间的相关性。

方法

我们从癌症基因组图谱中获取了卵巢癌及癌旁组织的苏木精-伊红染色冰冻组织病理学图像。基于自动图像细胞核分割处理技术,我们提取了全切片图像的定量图像特征。之后,我们运用生物信息学分析来寻找肿瘤内异质性的图像特征与耐药性之间的关系。

结果

我们的结果表明,基于计算机人工智能的自动图像处理过程能够有效提取图像特征,且所提取的关键图像特征与ITH密切相关。其中,ITH特征最为突出的周长标准差(Perimeter.sd)图像特征能够准确预测卵巢癌患者对铂类化疗药物的耐药风险。

结论

基于人工智能的自动图像处理及特征提取具有优异的效果。周长标准差可作为评估ITH的有用图像特征指标。ITH与卵巢癌的耐药性相关,因此ITH特征可作为评估卵巢癌患者耐药性的有效指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eeb7/10808968/a02db1840c2b/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验