Fernàndez-Bernal Anna, Sol Joaquim, Galo-Licona José Daniel, Mota-Martorell Natàlia, Mas-Bargues Cristina, Belenguer-Varea Ángel, Obis Èlia, Viña José, Borrás Consuelo, Jové Mariona, Pamplona Reinald
Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain.
Catalan Health Institute (ICS), Lleida Research Support Unit (USR), Fundació Institut Universitari per a la Recerca en Atenció Primària de Salut Jordi Gol i Gurina (IDIAP JGol), Lleida, Spain.
Aging Cell. 2025 Apr;24(4):e14429. doi: 10.1111/acel.14429. Epub 2024 Dec 5.
Centenarians and their relatives possess a notable survival advantage, with higher longevity and reduced susceptibility to major age-related diseases. To date, characteristic omics profiles of centenarians have been described, demonstrating that these individuals with exceptional longevity regulate their metabolism to adapt and incorporate more resilient biomolecules into their cells. Among these adaptations, the lipidomic profile stands out. However, it has not yet been determined whether this lipidomic profile is specific to centenarians or is the consequence of extreme longevity genetics and is also present in centenarians' offspring. This distinction is crucial for defining potential therapeutic targets that could help delay the aging process and associated pathologies. We applied mass-spectrometry-based techniques to quantify 569 lipid species in plasma samples from 39 centenarians, 63 centenarians' offspring, and 69 noncentenarians' offspring without familial connections. Based on this profile, we calculated different indexes to characterize the functional and structural properties of plasma lipidome. Our findings demonstrate that extreme longevity genetics (centenarians and centenarians' offspring) determines a specific lipidomic signature characterized by (i) an enrichment of hexosylceramides, (ii) a decrease of specific species of ceramides and sulfatides, (iii) a global increase of ether-PC and ether-LPC, and (iv) changes in the fluidity and diversity of specific lipid classes. We point out the conversion of ceramides to hexosylceramides and the maintenance of the levels of the ether-linked PC as a phenotypic trait to guarantee extreme longevity. We propose that this molecular signature is the result of an intrinsic adaptive program that preserves protective mechanisms and cellular identity.
百岁老人及其亲属具有显著的生存优势,寿命更长,对主要的年龄相关疾病易感性降低。迄今为止,已有百岁老人的特征性组学图谱被描述,表明这些超长寿命个体通过调节自身代谢来适应并将更具弹性的生物分子纳入细胞。在这些适应性变化中,脂质组图谱尤为突出。然而,目前尚不确定这种脂质组图谱是百岁老人所特有的,还是超长寿命基因的结果,并且是否也存在于百岁老人的后代中。这种区分对于确定可能有助于延缓衰老过程及相关病理状况的潜在治疗靶点至关重要。我们应用基于质谱的技术对39位百岁老人、63位百岁老人的后代以及69位无家族关系的非百岁老人的后代血浆样本中的569种脂质种类进行了定量分析。基于此图谱,我们计算了不同的指标来表征血浆脂质组的功能和结构特性。我们的研究结果表明,超长寿命基因(百岁老人及其后代)决定了一种特定的脂质组特征,其特点为:(i)己糖神经酰胺富集;(ii)特定种类的神经酰胺和硫脂减少;(iii)醚磷脂和醚溶血磷脂总体增加;(iv)特定脂质类别的流动性和多样性发生变化。我们指出神经酰胺向己糖神经酰胺的转化以及醚连接磷脂水平的维持是保证超长寿命的表型特征。我们提出这种分子特征是一种内在适应性程序的结果,该程序保留了保护机制和细胞特性。