Montaño-Priede José Luis, Zapata-Herrera Mario, Esteban Ruben, Zabala Nerea, Aizpurua Javier
Centro de Física de Materiales CFM-MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia, Spain.
Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia, Spain.
Nanophotonics. 2024 Nov 18;13(26):4771-4794. doi: 10.1515/nanoph-2024-0463. eCollection 2024 Dec.
In the realm of nanotechnology, the integration of quantum emitters with plasmonic nanostructures has emerged as an innovative pathway for applications in quantum technologies, sensing, and imaging. This research paper provides a comprehensive exploration of the photoluminescence enhancement induced by the interaction between quantum emitters and tailored nanostructure configurations. Four canonical nanoantennas (spheres, rods, disks, and crescents) are systematically investigated theoretically in three distinct configurations (single, gap, and nanoparticle-on-mirror nanoantennas), as a representative selection of the most fundamental and commonly studied structures and arrangements. A detailed analysis reveals that the rod gap nanoantenna configuration achieves the largest photoluminescence enhancement factor, of up to three orders of magnitude. The study presented here provides insights for the strategic design of plasmonic nanoantennas in the visible and near-IR spectral range, offering a roadmap for these structures to meet specific requirements in plasmon-enhanced fluorescence. Key properties such as the excitation rate, the quantum yield, the enhanced emitted power, or the directionality of the emission are thoroughly reviewed. The results of this overview contribute not only to the fundamental understanding of plasmon-enhanced emission of quantum emitters but also set the basis for the development of advanced nanophotonic devices with enhanced functionalities.
在纳米技术领域,量子发射器与等离子体纳米结构的整合已成为量子技术、传感和成像应用的创新途径。本研究论文全面探讨了量子发射器与定制纳米结构配置之间相互作用所引起的光致发光增强。作为最基本且研究最广泛的结构和排列的代表性选择,对四种典型纳米天线(球体、棒体、圆盘和月牙形)在三种不同配置(单纳米天线、间隙纳米天线和镜上纳米颗粒纳米天线)下进行了系统的理论研究。详细分析表明,棒状间隙纳米天线配置实现了最大的光致发光增强因子,高达三个数量级。本文的研究为可见和近红外光谱范围内等离子体纳米天线的战略设计提供了见解,为这些结构满足等离子体增强荧光的特定要求提供了路线图。对激发速率、量子产率、增强发射功率或发射方向性等关键特性进行了全面综述。这一综述结果不仅有助于对量子发射器等离子体增强发射的基本理解,也为开发具有增强功能的先进纳米光子器件奠定了基础。