Suppr超能文献

专注于生物膜的机器学习与网络分析。 (注:原文最后in后面缺少具体内容,译文按补充完整后的意思翻译)

Machine learning and network analysis with focus on the biofilm in .

作者信息

Zhang Zhiyuan, Chen Guozhong, Hussain Wajid, Pan Yuanyuan, Yang Zhu, Liu Yin, Li Erguang

机构信息

Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China.

Department of Medical Information Engineering, School of Medical Information, Wannan Medical College, Wuhu 241000, China.

出版信息

Comput Struct Biotechnol J. 2024 Nov 10;23:4148-4160. doi: 10.1016/j.csbj.2024.11.011. eCollection 2024 Dec.

Abstract

Research on biofilm formation in has greatly benefited from the generation of high-throughput sequencing data to drive molecular analysis. The accumulation of high-throughput sequencing data, particularly transcriptomic data, offers a unique opportunity to unearth the network and constituent genes involved in biofilm formation using machine learning strategies and co-expression analysis. Herein, the available RNA sequencing data related to biofilm studies and identified influenced functional pathways and corresponding genes in the process of the transition of bacteria from planktonic to biofilm state by employing machine learning and differential expression analysis. Using weighted gene co-expression analysis and previously developed online prediction platform, important functional modules, potential biofilm-associated proteins, and subnetworks of the biofilm-formation pathway were uncovered. Additionally, several novel protein interactions within these functional modules were identified by constructing a protein-protein interaction (PPI) network. To make this data more straightforward for experimental biologists, an online database named SAdb was developed (http://sadb.biownmcli.info/), which integrates gene annotations, transcriptomics, and proteomics data. Thus, the current study will be of interest to researchers in the field of bacteriology, particularly those studying biofilms, which play a crucial role in bacterial growth, pathogenicity, and drug resistance.

摘要

关于[具体细菌名称未给出]生物膜形成的研究因高通量测序数据的产生而受益匪浅,这些数据推动了分子分析。高通量测序数据的积累,尤其是转录组数据,为利用机器学习策略和共表达分析来揭示参与生物膜形成的网络和组成基因提供了独特的机会。在此,通过运用机器学习和差异表达分析,利用与[具体细菌名称未给出]生物膜研究相关的现有RNA测序数据,确定了细菌从浮游状态转变为生物膜状态过程中受影响的功能途径和相应基因。通过加权基因共表达分析和先前开发的在线预测平台,发现了重要的功能模块、潜在的生物膜相关蛋白以及生物膜形成途径的子网。此外,通过构建蛋白质-蛋白质相互作用(PPI)网络,在这些功能模块中鉴定了几种新的蛋白质相互作用。为了使这些数据对实验生物学家来说更直观,开发了一个名为SAdb的在线数据库(http://sadb.biownmcli.info/),该数据库整合了基因注释、转录组学和蛋白质组学数据。因此,当前的研究将引起细菌学领域研究人员的兴趣,特别是那些研究生物膜的人员,生物膜在细菌生长、致病性和耐药性中起着至关重要的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/077d/11617897/84d915b98645/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验