Suppr超能文献

基于机器学习的超级增强子分析及其在医学生物学中的应用。

Analysis of super-enhancer using machine learning and its application to medical biology.

机构信息

Division Chief in the Division of Medical AI Research and Development, National Cancer Center Research Institute; a Professor in the Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University and a Team Leader of the Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project.

Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project and an External Research Staff in the Medical AI Research and Development, National Cancer Center Research Institute.

出版信息

Brief Bioinform. 2023 May 19;24(3). doi: 10.1093/bib/bbad107.

Abstract

The analysis of super-enhancers (SEs) has recently attracted attention in elucidating the molecular mechanisms of cancer and other diseases. SEs are genomic structures that strongly induce gene expression and have been reported to contribute to the overexpression of oncogenes. Because the analysis of SEs and integrated analysis with other data are performed using large amounts of genome-wide data, artificial intelligence technology, with machine learning at its core, has recently begun to be utilized. In promoting precision medicine, it is important to consider information from SEs in addition to genomic data; therefore, machine learning technology is expected to be introduced appropriately in terms of building a robust analysis platform with a high generalization performance. In this review, we explain the history and principles of SE, and the results of SE analysis using state-of-the-art machine learning and integrated analysis with other data are presented to provide a comprehensive understanding of the current status of SE analysis in the field of medical biology. Additionally, we compared the accuracy between existing machine learning methods on the benchmark dataset and attempted to explore the kind of data preprocessing and integration work needed to make the existing algorithms work on the benchmark dataset. Furthermore, we discuss the issues and future directions of current SE analysis.

摘要

超级增强子(SEs)的分析最近引起了人们的关注,有助于阐明癌症和其他疾病的分子机制。SE 是一种强烈诱导基因表达的基因组结构,据报道其与癌基因的过度表达有关。由于 SE 的分析以及与其他数据的综合分析都需要使用大量的全基因组数据,因此最近开始利用人工智能技术,其核心是机器学习。在推动精准医学方面,除了基因组数据之外,考虑 SE 的信息也很重要;因此,在构建具有高泛化性能的稳健分析平台方面,有望适当地引入机器学习技术。在这篇综述中,我们解释了 SE 的历史和原理,并介绍了使用最先进的机器学习进行 SE 分析的结果,以提供对医学生物学领域 SE 分析现状的全面了解。此外,我们比较了基准数据集上现有机器学习方法的准确性,并尝试探索使现有算法在基准数据集上工作所需的数据预处理和集成工作的类型。此外,我们还讨论了当前 SE 分析存在的问题和未来方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c727/10199775/dd9a165f571c/bbad107f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验