Suppr超能文献

基于深度变换器的架构,用于从实际数学问题中识别数学方程。

Deep transformer-based architecture for the recognition of mathematical equations from real-world math problems.

作者信息

Aurpa Tanjim Taharat, Fariha Kazi Noshin, Hossain Kawser, Jeba Samiha Maisha, Ahmed Md Shoaib, Adib Md Rawnak Saif, Islam Farhana, Akter Farzana

机构信息

Bangabandhu Sheikh Mujibur Rahman Digital University, Gazipur, Bangladesh.

Department of Computer Science and Engineering, International University of Business Agriculture and Technology, Bangladesh.

出版信息

Heliyon. 2024 Oct 10;10(20):e39089. doi: 10.1016/j.heliyon.2024.e39089. eCollection 2024 Oct 30.

Abstract

Identifying mathematical equations from real-world math problems presents a unique and challenging task within the field of Natural Language Processing (NLP). It has a wide range of applications in various areas, such as academics, digital content design, and the development of automatic or interactive learning systems. However, the accurate understanding of these equations still needs to be enhanced due to the intrinsic complexity of mathematical symbols and various structural formats. Additionally, the unique syntax, diverse symbols, and complex structure of mathematical equations present significant obstacles that traditional NLP methods and Optical Character Recognition (OCR) systems need help to overcome. In this research, we utilize deep transformer architecture to recognize mathematical equations, and we have utilized our novel dataset with 3433 distinct observations. This dataset, which we have collected to include a diverse range of mathematical equations, is used to predict six ( , , , , and ) basic mathematical equations. We applied different transformer-based architectures, such as BERT, ELECTRA, XLNet, RoBERTa, and DistilBERT, and BERT performs best with 99.80% accuracy. To the best of our knowledge, this is the first NLP work in any language where we recognize the equation from the mathematical text.

摘要

从现实世界的数学问题中识别数学方程是自然语言处理(NLP)领域中一项独特且具有挑战性的任务。它在各个领域有着广泛的应用,如学术、数字内容设计以及自动或交互式学习系统的开发。然而,由于数学符号的内在复杂性和各种结构格式,对这些方程的准确理解仍有待提高。此外,数学方程独特的语法、多样的符号和复杂的结构给传统的NLP方法和光学字符识别(OCR)系统带来了重大障碍,这些系统难以克服。在本研究中,我们利用深度变换器架构来识别数学方程,并使用了包含3433个不同观测值的新颖数据集。这个我们收集的数据集包含了各种不同的数学方程,用于预测六个( 、 、 、 、 和 )基本数学方程。我们应用了不同的基于变换器的架构,如BERT、ELECTRA、XLNet、RoBERTa和DistilBERT,其中BERT表现最佳,准确率达到99.80%。据我们所知,这是任何语言中第一项从数学文本中识别方程的NLP工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0c8/11620133/e75c3f65b590/gr001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验