Fan Qian, Chen Runhao, Li Bin
School of Artificial Intelligence, Yangzhou University, Yangzhou, China.
Front Plant Sci. 2025 May 13;16:1543986. doi: 10.3389/fpls.2025.1543986. eCollection 2025.
In order to enhance the accuracy of rice leaf disease detection in complex farmland environments, and facilitate the deployment of the deep learning model onto mobile terminals for rapid real-time inference, this paper introduces a disease detection network titled YOLOv11 Multi-scale Dynamic Feature Fusion for Rice Disease Detection (YOLOv11-MSDFF-RiceD). The model adopts the concept of ParameterNet to design the FlexiC3k2Net module, which replaces the neck feature extraction network, thereby bolstering the model's feature learning capabilities without significantly increasing computational complexity. Additionally, an efficient multi-scale feature fusion module (EMFFM) is devised, improving both the computational efficiency and feature extraction capabilities of the model, while simultaneously reducing the number of parameters and memory footprint. The bounding box regression loss function, inner-WIoU, utilizes auxiliary bounding boxes and scale factors. Finally, the Dependency Graph (DepGraph) pruning model is employed to minimize the model's size, computational load, and parameter count, with only a moderate sacrifice in accuracy. Compared to the original YOLOv11n model, the optimized model achieves reductions in computational complexity, parameter scale, and memory usage by 50.7%, 49.6%, and 36.9%, respectively, with only a 1.7% improvement in mAP@0.5:0.9. These optimizations enable efficient deployment on resource-constrained mobile devices, making the model highly suitable for real-time disease detection in practical agricultural scenarios where hardware limitations are critical. Consequently, the improved model proposed in this paper effectively detects rice disease targets in complex environments, providing theoretical and technical support for the deployment and application of mobile terminal detection devices, such as rice disease detectors, in practical scenarios.
为提高复杂农田环境下水稻叶部病害检测的准确性,并便于将深度学习模型部署到移动终端进行快速实时推理,本文介绍了一种名为用于水稻病害检测的YOLOv11多尺度动态特征融合(YOLOv11-MSDFF-RiceD)的病害检测网络。该模型采用参数网络的概念设计了FlexiC3k2Net模块,该模块取代了颈部特征提取网络,从而在不显著增加计算复杂度的情况下增强了模型的特征学习能力。此外,还设计了一种高效的多尺度特征融合模块(EMFFM),提高了模型的计算效率和特征提取能力,同时减少了参数数量和内存占用。边界框回归损失函数inner-WIoU利用辅助边界框和比例因子。最后,采用依赖图(DepGraph)剪枝模型来最小化模型的大小、计算负载和参数数量,仅在准确性上有适度牺牲。与原始的YOLOv11n模型相比,优化后的模型在计算复杂度、参数规模和内存使用方面分别降低了50.7%、49.6%和36.9%,而在mAP@0.5:0.9上仅提高了1.7%。这些优化使得能够在资源受限的移动设备上进行高效部署,使该模型非常适合在硬件限制至关重要的实际农业场景中进行实时病害检测。因此,本文提出的改进模型能够在复杂环境中有效检测水稻病害目标,为水稻病害检测仪等移动终端检测设备在实际场景中的部署和应用提供了理论和技术支持。