Okuma Ryutaro, MacFarquharson Kylie, Johnson Roger D, Voneshen David, Manuel Pascal, Coldea Radu
Clarendon Laboratory, University of Oxford Physics Department, Oxford, OX1 3PU, UK.
Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan.
Nat Commun. 2024 Dec 6;15(1):10615. doi: 10.1038/s41467-024-53345-8.
The physics of spin-orbit entangled magnetic moments of 4d and 5d transition metal ions on a honeycomb lattice has been much explored in the search for unconventional magnetic orders or quantum spin liquids expected for compass spin models, where different bonds in the lattice favour different orientations for the magnetic moments. Realising such physics with rare-earth ions is a promising route to achieve exotic ground states in the extreme spin-orbit limit; however, this regime has remained experimentally largely unexplored due to major challenges in materials synthesis. Here we report the successful synthesis of powders and single crystals of β-NaPrO, with 4f Pr j = 1/2 magnetic moments arranged on a hyperhoneycomb lattice with the same threefold coordination as the planar honeycomb. We find a strongly non-collinear magnetic order with highly dispersive gapped excitations that we argue arise from frustration between bond-dependent, anisotropic off-diagonal exchanges, a compass quantum spin model not explored experimentally so far. Our results show that rare-earth ions on threefold coordinated lattices offer a platform for the exploration of quantum compass spin models in the extreme spin-orbit regime, with qualitatively distinct physics from that of 4d and 5d Kitaev materials.
在寻找罗盘自旋模型所预期的非常规磁序或量子自旋液体的过程中,人们对蜂窝晶格上4d和5d过渡金属离子的自旋 - 轨道纠缠磁矩的物理性质进行了大量探索,在这种模型中,晶格中的不同键有利于磁矩的不同取向。利用稀土离子实现这种物理性质是在极端自旋 - 轨道极限下实现奇异基态的一条有前景的途径;然而,由于材料合成方面的重大挑战,这一领域在实验上仍 largely未被探索。在此,我们报告成功合成了β - NaPrO的粉末和单晶,其中具有4f Pr j = 1/2磁矩,这些磁矩排列在一个超蜂窝晶格上,其具有与平面蜂窝相同的三重配位。我们发现了一种具有高度色散能隙激发的强非共线磁序,我们认为这是由依赖于键的各向异性非对角交换之间的挫折引起的,这是一种迄今为止尚未通过实验探索的罗盘量子自旋模型。我们的结果表明,三重配位晶格上的稀土离子为在极端自旋 - 轨道区域探索量子罗盘自旋模型提供了一个平台,其物理性质与4d和5d Kitaev材料的性质在定性上截然不同。