Mateos Raúl N, Winardi Wira, Chiba Kenichi, Okada Ai, Suzuki Ayako, Mitsuishi Yoichiro, Shiraishi Yuichi
Division of Genome Analysis Platform Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
Division of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
NPJ Syst Biol Appl. 2024 Dec 6;10(1):147. doi: 10.1038/s41540-024-00475-w.
The KEAP1-NRF2 system plays a crucial role in responding to oxidative and electrophilic stress. Its dysregulation can cause the overexpression of downstream genes, a known cancer hallmark. Understanding and detecting abnormal KEAP1-NRF2 activity is essential for understanding disease mechanisms and identifying therapeutic targets. This study presents an approach that analyzes splicing patterns by a naive Bayes-based classifier to identify constitutive activation of the KEAP1-NRF2 system, focusing on the higher presence of abnormal splicing junctions as a subproduct of overexpression of downstream genes. Our splicing-based classifier demonstrated robust performance, reliably identifying activation of the KEAP1-NRF2 pathway across extensive datasets, including The Cancer Genome Atlas and the Sequence Read Archive. This shows the classifier's potential to analyze hundreds of thousands of transcriptomes, highlighting its utility in broad-scale genomic studies and provides a new perspective on utilizing splicing aberrations caused by overexpression as diagnostic markers, offering potential improvements in diagnosis and treatment strategies.
KEAP1-NRF2系统在应对氧化应激和亲电应激方面发挥着关键作用。其失调会导致下游基因的过度表达,这是一种已知的癌症特征。了解和检测KEAP1-NRF2的异常活性对于理解疾病机制和确定治疗靶点至关重要。本研究提出了一种方法,该方法通过基于朴素贝叶斯的分类器分析剪接模式,以识别KEAP1-NRF2系统的组成性激活,重点关注异常剪接接头的较高出现频率,将其作为下游基因过度表达的副产物。我们基于剪接的分类器表现出强大的性能,能够在包括癌症基因组图谱和序列读取存档在内的大量数据集中可靠地识别KEAP1-NRF2途径的激活。这表明该分类器有潜力分析数十万转录组,突出了其在大规模基因组研究中的实用性,并为利用由过度表达引起的剪接异常作为诊断标志物提供了新视角,为诊断和治疗策略带来潜在改进。