Suppr超能文献

VaxOptiML:利用机器学习准确预测MHC-I和II表位以优化癌症免疫治疗。

VaxOptiML: leveraging machine learning for accurate prediction of MHC-I and II epitopes for optimized cancer immunotherapy.

作者信息

T Dhanushkumar, G Sunila B, Hebbar Sripad Rama, Selvam Prasanna Kumar, Vasudevan Karthick

机构信息

Department of Biotechnology, School of Applied Sciences, REVA University, 560064, Bengaluru, India.

School of Computer Science and Applications, REVA University, 560064, Bengaluru, India.

出版信息

Immunogenetics. 2024 Dec 7;77(1):8. doi: 10.1007/s00251-024-01361-9.

Abstract

Cancer immunotherapy hinges on accurate epitope prediction for advancing vaccine development. VaxOptiML (available at https://vaxoptiml.streamlit.app/ ) is an integrated pipeline designed to enhance epitope prediction and prioritization. This study aims to develop and deploy a robust tool for accurate prediction and prioritization of highly immunogenic and optimized MHC-I and MHC-II T-cell epitopes for cancer vaccine development and immunotherapy. Utilizing a curated dataset of experimentally validated epitopes and employing sophisticated machine learning techniques, VaxOptiML features three models: epitope prediction from target sequences, personalized HLA typing, and prioritization the predicted epitopes based on immunogenicity scores. Our rigorous data extraction, cleaning, and feature extraction processes, coupled with model building, yield exceptional accuracy, sensitivity, specificity, and F1 score, surpassing existing prediction methods. Comprehensive visual representations underscore VaxOptiML's robustness and efficacy in accelerating epitope discovery and vaccine design for cancer immunotherapy. Deployed via Streamlit for public use, VaxOptiML enhances accessibility and usability for researchers and clinicians, demonstrating significant potential in cancer immunotherapy.

摘要

癌症免疫疗法依赖于准确的表位预测来推进疫苗开发。VaxOptiML(可在https://vaxoptiml.streamlit.app/获取)是一个旨在增强表位预测和优先级排序的集成管道。本研究旨在开发和部署一种强大的工具,用于准确预测和优先选择高度免疫原性且经过优化的MHC-I和MHC-II T细胞表位,以用于癌症疫苗开发和免疫疗法。利用经过精心策划的经实验验证的表位数据集,并采用先进的机器学习技术,VaxOptiML具有三种模型:从靶序列预测表位、个性化HLA分型以及根据免疫原性评分对预测的表位进行优先级排序。我们严格的数据提取、清理和特征提取过程,再加上模型构建,产生了卓越的准确性、敏感性、特异性和F1分数,超过了现有的预测方法。全面的可视化表示突出了VaxOptiML在加速癌症免疫疗法的表位发现和疫苗设计方面的稳健性和有效性。通过Streamlit部署以供公众使用,VaxOptiML提高了研究人员和临床医生的可及性和可用性,在癌症免疫疗法中显示出巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验