Suppr超能文献

用于突变HLA I类表位免疫原性预测的元学习,以加速癌症临床免疫治疗。

Meta learning for mutant HLA class I epitope immunogenicity prediction to accelerate cancer clinical immunotherapy.

作者信息

Xu Long, Yang Qiang, Dong Weihe, Li Xiaokun, Wang Kuanquan, Dong Suyu, Zhang Xianyu, Yang Tiansong, Luo Gongning, Liao Xingyu, Gao Xin, Wang Guohua

机构信息

School of Computer Science and Technology, Harbin Institute of Technology, West DaZhi Street, 150001 Harbin, China.

School of Medicine and Health, Harbin Institute of Technology, Yikuang Street, 150000 Harbin, China.

出版信息

Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae625.

Abstract

Accurate prediction of binding between human leukocyte antigen (HLA) class I molecules and antigenic peptide segments is a challenging task and a key bottleneck in personalized immunotherapy for cancer. Although existing prediction tools have demonstrated significant results using established datasets, most can only predict the binding affinity of antigenic peptides to HLA and do not enable the immunogenic interpretation of new antigenic epitopes. This limitation results from the training data for the computational models relying heavily on a large amount of peptide-HLA (pHLA) eluting ligand data, in which most of the candidate epitopes lack immunogenicity. Here, we propose an adaptive immunogenicity prediction model, named MHLAPre, which is trained on the large-scale MS-derived HLA I eluted ligandome (mostly presented by epitopes) that are immunogenic. Allele-specific and pan-allelic prediction models are also provided for endogenous peptide presentation. Using a meta-learning strategy, MHLAPre rapidly assessed HLA class I peptide affinities across the whole pHLA pairs and accurately identified tumor-associated endogenous antigens. During the process of adaptive immune response of T-cells, pHLA-specific binding in the antigen presentation is only a pre-task for CD8+ T-cell recognition. The key factor in activating the immune response is the interaction between pHLA complexes and T-cell receptors (TCRs). Therefore, we performed transfer learning on the pHLA model using the pHLA-TCR dataset. In pHLA binding task, MHLAPre demonstrated significant improvement in identifying neoepitope immunogenicity compared with five state-of-the-art models, proving its effectiveness and robustness. After transfer learning of the pHLA-TCR data, MHLAPre also exhibited relatively superior performance in revealing the mechanism of immunotherapy. MHLAPre is a powerful tool to identify neoepitopes that can interact with TCR and induce immune responses. We believe that the proposed method will greatly contribute to clinical immunotherapy, such as anti-tumor immunity, tumor-specific T-cell engineering, and personalized tumor vaccine.

摘要

准确预测人类白细胞抗原(HLA)I类分子与抗原肽段之间的结合是一项具有挑战性的任务,也是癌症个性化免疫治疗的关键瓶颈。尽管现有的预测工具使用已建立的数据集取得了显著成果,但大多数工具只能预测抗原肽与HLA的结合亲和力,无法对新的抗原表位进行免疫原性解读。这一局限性源于计算模型的训练数据严重依赖大量肽 - HLA(pHLA)洗脱配体数据,其中大多数候选表位缺乏免疫原性。在此,我们提出了一种自适应免疫原性预测模型,名为MHLAPre,它基于大规模质谱衍生的具有免疫原性的HLA I类洗脱配体组(主要由表位呈现)进行训练。还提供了等位基因特异性和泛等位基因预测模型用于内源性肽呈递。使用元学习策略,MHLAPre快速评估了整个pHLA对之间的HLA I类肽亲和力,并准确识别了肿瘤相关的内源性抗原。在T细胞的适应性免疫反应过程中,抗原呈递中pHLA特异性结合只是CD8 + T细胞识别的前置任务。激活免疫反应的关键因素是pHLA复合物与T细胞受体(TCR)之间的相互作用。因此,我们使用pHLA - TCR数据集对pHLA模型进行了迁移学习。在pHLA结合任务中,与五个最先进的模型相比,MHLAPre在识别新表位免疫原性方面表现出显著改进,证明了其有效性和稳健性。在对pHLA - TCR数据进行迁移学习后,MHLAPre在揭示免疫治疗机制方面也表现出相对优越的性能。MHLAPre是一种强大的工具,可用于识别能够与TCR相互作用并诱导免疫反应的新表位。我们相信,所提出的方法将极大地促进临床免疫治疗,如抗肿瘤免疫、肿瘤特异性T细胞工程和个性化肿瘤疫苗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6210/11630330/4fb76243cc0e/bbae625f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验