Suppr超能文献

使用可解释的多视图心血管磁共振电影序列深度学习模型预测平均肺动脉压

Mean pulmonary artery pressure prediction with explainable multi-view cardiovascular magnetic resonance cine series deep learning model.

作者信息

Cheng Li-Hsin, Sun Xiaowu, Elliot Charlie, Condliffe Robin, Kiely David G, Alabed Samer, Swift Andrew J, van der Geest Rob J

机构信息

Division of Image Processing (LKEB), Department of Radiology, Leiden University Medical, Center, the Netherlands.

Sheffield Pulmonary Vascular Disease Unit, Sheffield Teaching Hospitals NHS Foundation, Trust, UK.

出版信息

J Cardiovasc Magn Reson. 2024 Dec 5;27(1):101133. doi: 10.1016/j.jocmr.2024.101133.

Abstract

BACKGROUND

Pulmonary hypertension (PH) is a heterogeneous condition and regardless of etiology impacts negatively on survival. Diagnosis of PH is based on hemodynamic parameters measured invasively at right heart catheterization (RHC); however, a non-invasive alternative would be clinically valuable. Our aim was to estimate RHC parameters non-invasively from cardiac magnetic resonance (MR) data using deep learning models and to identify key contributing imaging features.

METHODS

We constructed an explainable convolutional neural network (CNN) taking cardiac MR cine series from four different views as input to predict mean pulmonary artery pressure (mPAP). The model was trained and evaluated on 1646 examinations. The model's attention weight and predictive performance associated with each frame, view, or phase were used to judge its importance. Additionally, the importance of each cardiac chamber was inferred by perturbing part of the input pixels.

RESULTS

The model achieved a Pearson correlation coefficient of 0.80 and R of 0.64 in predicting mPAP and identified the right ventricle region on short-axis view to be especially informative.

CONCLUSION

Hemodynamic parameters can be estimated non-invasively with a CNN, using MR cine series from four views, revealing key contributing features at the same time.

摘要

背景

肺动脉高压(PH)是一种异质性疾病,无论病因如何,都会对生存率产生负面影响。PH的诊断基于右心导管检查(RHC)时通过侵入性测量的血流动力学参数;然而,一种非侵入性的替代方法在临床上将具有重要价值。我们的目的是使用深度学习模型从心脏磁共振(MR)数据中无创估计RHC参数,并识别关键的影像学特征。

方法

我们构建了一个可解释的卷积神经网络(CNN),将来自四个不同视图的心脏MR电影序列作为输入,以预测平均肺动脉压(mPAP)。该模型在1646次检查中进行了训练和评估。模型与每一帧、视图或相位相关的注意力权重和预测性能用于判断其重要性。此外,通过扰动部分输入像素来推断每个心腔的重要性。

结果

该模型在预测mPAP时的Pearson相关系数为0.80,R为0.64,并确定短轴视图上的右心室区域信息含量特别高。

结论

使用来自四个视图的MR电影序列,通过CNN可以无创估计血流动力学参数,同时揭示关键的特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0b0/11782807/db7f2aa51ba3/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验