Suppr超能文献

人工智能和大数据解决阿片类药物危机的方法:一项范围综述方案。

AI and Big Data approaches to addressing the opioid crisis: a scoping review protocol.

作者信息

Amjad Maaz, Graham Scott, McCormick Katie, Claborn Kasey

机构信息

Steve Hicks School of Social Work, The University of Texas at Austin, Austin, Texas, USA.

Rhetoric & Writing, The University of Texas at Austin, Austin, Texas, USA.

出版信息

BMJ Open. 2024 Aug 31;14(8):e084728. doi: 10.1136/bmjopen-2024-084728.

Abstract

INTRODUCTION

This paper outlines the steps necessary to assess the latest developments in artificial intelligence (AI) as well as Big Data technologies and their relevance to the opioid crisis. Fatal opioid overdoses have risen to over 82 998 annually in the USA. This highlights the need for urgent and effective data-driven solutions. AI approaches, such as machine learning, deep learning and natural language processing, have been employed to analyse patterns and trends in overdose data and facilitate timely interventions. However, a comprehensive scoping review on the effectiveness of AI-driven technologies to detect, treat, prevent or respond to the opioid crisis remains absent. Thus, it is important to identify recent advancements in AI and Big Data technologies in addressing the opioid crisis.

METHODS AND ANALYSIS

We will electronically search four scientific databases (PubMed, Web of Science, Engineering Village and PsycInfo), including finding reference lists and grey literature from 2013 to 2023. Covidence will be used for screening and selecting papers. We will extract information such as citation details, study context, data used, AI/Big Data technologies, features, algorithms and evaluation metrics. This data will be synthesised, analysed and summarised to draw meaningful conclusions and identify future directions to tackle the opioid crisis.

ETHICS AND DISSEMINATION

Ethics approval is not required. Results will be disseminated via conference presentations and peer-reviewed publication.

摘要

引言

本文概述了评估人工智能(AI)以及大数据技术的最新发展及其与阿片类药物危机相关性所需的步骤。在美国,每年因阿片类药物过量导致的死亡人数已升至82998人以上。这凸显了对基于数据的紧急有效解决方案的需求。人工智能方法,如机器学习、深度学习和自然语言处理,已被用于分析过量用药数据中的模式和趋势,并促进及时干预。然而,目前仍缺乏对人工智能驱动技术在检测、治疗、预防或应对阿片类药物危机方面有效性的全面范围审查。因此,确定人工智能和大数据技术在应对阿片类药物危机方面的最新进展非常重要。

方法与分析

我们将通过电子方式搜索四个科学数据库(PubMed、科学网、工程村和PsycInfo),包括查找2013年至2023年的参考文献列表和灰色文献。将使用Covidence筛选和选择论文。我们将提取诸如引用细节、研究背景、使用的数据、人工智能/大数据技术、特征、算法和评估指标等信息。这些数据将被综合、分析和总结,以得出有意义的结论,并确定应对阿片类药物危机的未来方向。

伦理与传播

无需伦理批准。研究结果将通过会议报告和同行评审出版物进行传播。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验