Coulibaly Daouda, Bayani Azadeh, Sylla Bry, Motulsky Aude, Nikiema Jean Noël, Bosson-Rieutort Delphine
Laboratoire Transformation Numérique en Santé, Montréal, Québec, Canada.
Centre de recherche en santé publique, Université de Montréal et CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, Québec, Canada.
BMJ Open. 2025 Feb 18;15(2):e094908. doi: 10.1136/bmjopen-2024-094908.
Empirical data on the barriers limiting artificial intelligence (AI)'s impact on healthcare are scarce, particularly within the Canadian context. This study aims to address this gap by conducting a scoping review to identify and evaluate AI algorithms developed by researchers affiliated with Canadian institutions for patient triage, diagnosis and care management. The goal is to identify characteristics in the developed AI algorithms that can be leveraged for a better impact.
A scoping review will be conducted following the JBI Methodology for Scoping Reviews and reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guidelines. Relevant literature will be identified through comprehensive searches of MEDLINE (PubMed), CINAHL (EBSCO) and Web of Science (Clarivate) databases, combining keywords related to AI, clinical management and the Canadian context. Studies published after 2014, in English or French, that discuss AI algorithms developed for patient triage, diagnosis or care management by researchers affiliated with Canadian institutions will be included. Data from the selected articles will be extracted and analysed descriptively, and findings will be presented in tabular form accompanied by a narrative summary.
Ethical approval is not required for this study as it involves the review of publicly available literature. The scoping review is expected to be completed by November 2025. The findings will be disseminated through publications in peer-reviewed journals and presentations at conferences focused on AI and healthcare practice.
关于限制人工智能(AI)对医疗保健影响的障碍的实证数据稀缺,尤其是在加拿大背景下。本研究旨在通过进行一项范围综述来填补这一空白,以识别和评估由加拿大机构的研究人员开发的用于患者分诊、诊断和护理管理的人工智能算法。目标是识别已开发的人工智能算法中可用于产生更好影响的特征。
将按照JBI范围综述方法进行范围综述,并按照系统评价和Meta分析扩展的范围综述首选报告项目指南进行报告。将通过全面检索MEDLINE(PubMed)、CINAHL(EBSCO)和Web of Science(科睿唯安)数据库来识别相关文献,结合与人工智能、临床管理和加拿大背景相关的关键词。纳入2014年以后发表的、以英语或法语撰写的、讨论由加拿大机构的研究人员开发的用于患者分诊、诊断或护理管理的人工智能算法的研究。将从所选文章中提取数据并进行描述性分析,研究结果将以表格形式呈现,并伴有叙述性总结。
本研究无需伦理批准,因为它涉及对公开可用文献的综述。范围综述预计将于2025年11月完成。研究结果将通过在同行评审期刊上发表以及在专注于人工智能和医疗实践的会议上进行报告来传播。