Suppr超能文献

主导药物过量的邻里水平预测因素:混合机器学习和空间方法。

The leading neighborhood-level predictors of drug overdose: A mixed machine learning and spatial approach.

机构信息

Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; South Carolina Department of Health and Environmental Control (SCDHEC), Columbia, SC 29201, USA.

Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA.

出版信息

Drug Alcohol Depend. 2021 Dec 1;229(Pt B):109143. doi: 10.1016/j.drugalcdep.2021.109143. Epub 2021 Oct 29.

Abstract

BACKGROUND

Drug overdose is a leading cause of unintentional death in the United States and has contributed significantly to a decline in life expectancy during recent years. To combat this health issue, this study aims to identify the leading neighborhood-level predictors of drug overdose and develop a model to predict areas at the highest risk of drug overdose using geographic information systems and machine learning (ML) techniques.

METHOD

Neighborhood-level (block group) predictors were grouped into three domains: socio-demographic factors, drug use variables, and protective resources. We explored different ML algorithms, accounting for spatial dependency, to identify leading predictors in each domain. Using geographically weighted regression and the best-performing ML algorithm, we combined the output prediction of three domains to produce a final ensemble model. The model performance was validated using classification evaluation metrics, spatial cross-validation, and spatial autocorrelation testing.

RESULTS

The variables contributing most to the predictive model included the proportion of households with food stamps, households with an annual income below $35,000, opioid prescription rate, smoking accessories expenditures, and accessibility to opioid treatment programs and hospitals. Compared to the error estimated from normal cross-validation, the generalized error of the model did not increase considerably in spatial cross-validation. The ensemble model using ML outperformed the GWR method.

CONCLUSION

This study identified strong neighborhood-level predictors that place a community at risk of experiencing drug overdoses, as well as protective factors. Our findings may shed light on several specific avenues for targeted intervention in neighborhoods at risk for high drug overdose burdens.

摘要

背景

药物过量在美国是导致意外死亡的主要原因,近年来也是导致预期寿命下降的主要原因之一。为了解决这个健康问题,本研究旨在确定导致药物过量的主要社区级预测因素,并利用地理信息系统和机器学习 (ML) 技术开发一种预测药物过量高风险地区的模型。

方法

将社区级(街区组)预测因素分为三个领域:社会人口因素、药物使用变量和保护资源。我们探索了不同的 ML 算法,考虑到空间依赖性,以确定每个领域的主要预测因素。我们使用地理加权回归和性能最佳的 ML 算法,将三个领域的输出预测结合起来,生成最终的集成模型。使用分类评估指标、空间交叉验证和空间自相关测试来验证模型性能。

结果

对预测模型贡献最大的变量包括有食品券的家庭比例、年收入低于 35000 美元的家庭比例、阿片类药物处方率、吸烟用品支出以及阿片类药物治疗计划和医院的可及性。与正常交叉验证估计的误差相比,模型的广义误差在空间交叉验证中并没有显著增加。使用 ML 的集成模型优于 GWR 方法。

结论

本研究确定了一些强大的社区级预测因素,这些因素使社区面临药物过量的风险,同时也确定了一些保护因素。我们的研究结果可能为高药物过量负担风险的社区提供了一些具体的有针对性的干预途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验